
Fields and waves in nature and
engineering — the big picture:
Fundamental building blocks of matter — electrons and protons at atomic
scales — interact with one another gravitationally and via “electromagnetic”
forces. These interactions are most conveniently described in terms of suit-
ably defined “vector fields” that permeate space and time, or simply the space-
time (x, y, z, t) ≡ (r, t). Interactions attributed to particle masses can be
formulated by gravitational fields g(r, t) specified in reference frames where
spatial coordinates r = (x, y, z) are defined. Far stronger interactions at-
tributed to particle charges, on the other hand, are formulated in terms of
a pair of vector fields, E(r, t) and B(r, t), known as electric and magnetic
fields, respectively.

Electric and magnetic fields:

A particle with charge q and mass m as well as position and velocity vectors
r and v = dr

dt specified at an instant t within a measurement frame (or “lab”
frame) will be accelerated in accordance with

m
dv

dt
= q(E(r, t) + v ×B(r, t)), (1)
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which is Newton’s 2nd law of motion1 for a particle under the influence of
Lorentz force

F = q(E + v ×B). (2)

In view of (1), the operational definitions of fields E(r, t) and B(r, t) arise
from particle acceleration a = dv

dt that can be measured in the lab frame:
the electric field E is evidently force per unit stationary charge (i.e., v = 0)
whereas field B describes an additional force per unit current flux (e.g., qv)
that acts in a direction perpendicular to v.

There are important differences between gravitational and electromag-
netic interactions: Gravitational interactions are always attractive indicating
that particle masses m that generate the gravitational field g(r, t) must all
have the same algebraic sign (taken to be positive by convention). Electro-
magnetic interactions, on the other hand, are attractive or repulsive depend-
ing on particle charges q which can be positive or negative. By convention
a positive charge q = e ≈ 1.6 × 10−21 C is attributed to the fundamental
particle know as proton, while, again by convention, q = −e for an electron,
the sole companion of the proton within a hydrogen atom2. Protons and
electrons are charged elementary building blocks3 of all atoms (hydrogen as

1Valid so long as |v| % c where c is the speed of light in vacuum.
2Hydrogen atom exists as a consequence of mutual attraction between proton and electron counterbal-

anced by quantum mechanical constraints on allowed energy states.
3Atoms can also contain in their nuclei varying numbers of an uncharged particle known as the neutron

which is responsible for different isotopes of chemical elements (e.g., the hydrogen isotope known as
deuterium contains a neutron in addition to a proton and an electron). While neutrons have no net
charge, they consist of charged sub-nuclear particles known as quarks whose motions within the neutron
establish currents and a magnetic moment.
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well as atoms of heavier elements) that constitute the matter around us. In a
collection of fundamental particles the total mass is always a monotonically
increasing function of the number of particles. However, that is not the case
with total charge since individual particle charges can be positive or nega-
tive. In fact, the net charge density ρ(r, t) found in macroscopic amounts of
matter is typically close to zero as a result of having nearly equal numbers of
protons and electrons in ordinary matter composed of charge-neutral atoms
and molecules4.

Fields are relative:

Physical laws that we use today to describe our surroundings have been
developed to have identical forms in all reference frames in uniform motion
with respect to one another. For instance, Lorentz force law on a charge q is

F = q(E + v ×B) and F′ = q(E′ + v′ ×B′) (3)

in terms of unprimed and primed variables measured in two reference frames.
Moreover, particle charge q and the speed of light c are assigned invariant5
values in reference frames in relative motion (thus q′ and c′ are unnecessary
to invoke in physical models). The ramifications of these restrictions con-
stituting the special theory of relativity (first described by Einstein in

4The reason why intrinsically weaker gravity becomes dominant in the macro world.
5Other “relativistic invariants” between different reference frames include particle (rest) masses and the

so-called “spacetime interval”
√

t2 − L2/c2 =
√
t′2 − L′2/c2 between two events ocurring at two locations

and two times separated by a distance L and time-delay t, respectively. Relativistic invariants are the
most prized physical quantitites to focus on in relativistic models (simply because they remain fixed in all
reference frames). Note that distances L '= L′ and time-delays t '= t′ are not relativistic invariants!
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1905 and covered at UIUC in PHYS 325) are in full accord with experimen-
tal measurements. They are also well matched by Newtonian relations
(approximate but more intuitive laws of dynamics covered in PHYS 211) if
and when the relative speed of primed and unprimed frames is negligible
compared to the speed of light c.

Since in Newtonian descriptions mass m and acceleration dv
dt have invari-

ant values in all reference frames, it follows that if and when |v′ − v| % c,
then F′ = F, in which case (3) implies

E′ + v′ ×B′ = E + v ×B. (4)

Then, for a stationary charge in the primed frame, we have v′ = 0 and

E′ = E + v ×B, (5)

which indicates that force per unit stationary charge in the primed frame
— i.e., the electric field in the primed frame — is a linear combination of
electrical and magnetic forces exerted on the same charge as seen from an-
other reference frame (unprimed) where the charge appears to have a vector
velocity v.

Thus, electric and magnetic fields needed in the formulation of charged
particle interactions are not unrelated to one another — rather, they intermix
in a manner that depends on the reference frame being used for analysis
purposes. Note that charges q which are stationary in one reference frame
(and therefore carry no electrical current) will appear to be in motion in
another frame and thus carry electrical currents I. It must therefore be
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evident that the equations for E and B in any reference frame must be cross-
coupled and depend on both charge and current densities that are measured
in the same frame.

Maxwell’s field equations:

The required set of coupled equations governing E and B was “discovered” in
1864 by James Clerk Maxwell to be (first introduced in PHYS 212 in integral
form and discussed throughout this course)

∇ · E = ρ
εo

Divergence eqn’s ∇ ·B = 0

∇× E = −∂B
∂t Curl eqn’s ∇×B = µoJ + µoεo

∂E
∂t

where
µo ≡ 4π × 10−7 H

m
and εo =

1

µoc2
≈ 1

36π × 109
F
m

in mksA units and
c =

1
√
µoεo

≈ 3× 108
m
s

is the speed of light in free space. Furthermore ρ = ρ(r, t) refers to the net
charge density and J = J(r, t) to the current density in the measurement
frame, whereas ∇ ·E and ∇×E refer to the divergence and curl of vector
field E generated by partial differentiation of the orthogonal components of
E (concepts introduced in MATH 241 and reviewed in Lecture 4).
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Solutions of Maxwell’s equations — waves and static fields (AC/DC):

Maxwell’s partial differential equations shown above, describing the coupled
dynamics of electric and magnetic fields E and B in response to space and
time varying source fields ρ and J, require an extended study to appreciate
their full ramifications and predictions. All predictions of these equations
have been experimentally verified and it has been found out that everything
that is known and observed about electricity and magnetism can be explained
in terms of these equations and their quantized forms.

One of their predictions, derived specifically in Lecture 18, is that they
support traveling wave solutions of the form

E(r, t) ∝ B(r, t) ∝ cos(2πf(t− z

c
)) (6)

in regions where J = ρ = 0. These are co-sinusoidal field perturbations hav-
ing oscillation frequencies f , oscillation periods T = 1

f , wavelengths λ = c
f ,

and they travel in 3D space with the speed of light c in free space. Since
Maxwell’s equations are linear, superpositions of co-sinusoidal waves with
different wavelengths provide additional solutions — these can have arbi-
trary spatial variations and still travel at a fixed speed c. Any such field
perturbation will travel across a region of size L during a time interval L/c
as illustrated in the margin.

t = 0

L
(a)

t = L/2c

L
(b)

c

c

t = L/c

L
(c)

c

Another prediction of Maxwell’s equations is that fields established by
static — i.e., non-time-varying — charge and current densities ρ = ρ(r) and
J = J(r) satisfy two separate sets of decoupled equations
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Electrostatics Magnetostatics

∇ · E = ρ
εo

Divergence eqn’s ∇ ·B = 0

∇×E = 0 Curl eqn’s ∇×B = µoJ

shown in the left and right columns above — these were obtained by sim-
ply setting the terms ∂E/∂t and ∂B/∂t in the curl equations to zero. In-
dependent “curl-free” static electric fields E(r) and “divergence-free” static
magnetic fields B(r) satisfying these simplified equations are naturally far
easier to determine than the coupled dynamic fields E(r, t) and B(r, t) to be
encountered in response to time-varying sources ρ(r, t) and J(r, t).

Quasi-static fields:

Even though in practical cases of interest (in physics and engineering) time-
varying sources are the “rule” and static sources an “exception”, learning to
solve the simplified set of electrostatics and magnetostatics equations turns
out to be invaluable. The reason is, static solutions often provide accurate
approximations — known as quasi-static approximation — for time-varying
field problems involving slowly-varying sources ρ(r, t) and J(r, t).

More specifically, if the source variation period T is much longer than the
travel time L/c of field perturbations across a region of size L, that is, if

T + L

c
, (7)

7



then field calculations for the entire region can be done statically using the
instantaneous (as opposed to retarded or previous) values of field sources
ρ and J. This is true because under the given condition source strengths
will remain nearly constant over time intervals needed to communicate the
new fields to the most distant corners of the region of interest. We can also

t = 0

L
(a)

t = L/2c

L
(b)

c

c

t = L/c

L
(c)

c

re-state the same inequality (7) as

L % cT =
c

f
= λ (8)

using the definition of wavelength λ introduced earlier. The indication is
then, any system with a physical size L that is small in terms of wavelength
λ of the applied field variations can be analyzed quasi-statically by starting
from Maxwell’s static equations.

Fields and circuits:

Lumped circuit analysis techniques introduced in ECE 110 and 210 constitute
practical applications of the quasi-static approach suitable for “electrically
small circuits” consisting of capacitors, inductors, and resistors and slowly
varying AC sources. By contrast, the analysis of “electrically large circuits”
with physical dimensions L approaching or exceeding λ requires taking a
proper account of propagation time delays L/c in the system by developing
a distributed circuit approach based on the full set of Maxwell’s equations.

One practical application area where this need is most acute nowadays
is in chip (integrated circuit) design and packaging suitable for high-speed
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computing6. While the physical dimensions of electronic chips and micro-
circuits are generally very small, such elements can still be electrically large
in the sense that L ∼ λ because of reduced wavelengths λ at high clock
speeds f = 1/T . Thus, even the computer engineers (CompE’s) amongst us
need to understand and learn how to mitigate (and take advantage of) the
ramifications of Maxwell’s equations.

Details and study plan:
So much for the big picture about fields and waves encountered in nature
and engineering systems and circuits. Working details of how fields and wave
effects can be computed and characterized will be provided in the remaining
parts of these notes.

Over the course of 39 lectures we will develop and study, in succession,
the equations and applications of electrostatics (Lectures 1-11), magnetism
(Lectures 12-15), and electromagnetics (Lectures 16-39) with a focus on time
varying (quasi-static as well as wave-like) phenomena.

ECE 329:

We start by finding out how the equations of electrostatics arise from the
familiar Coulomb’s law (like charges repel, unlike charges attract) and the

6E.g., Taflove, “Why study electromagnetics”, IEEE APM, 44, 132, 2002.
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idea of field superpositions. We learn to solve electrostatic problems using the
notion of electrostatic potential (voltage) and develop the notions of polariza-
tion, conduction, charge continuity, and capacitance in quasi-static settings
of practical importance.

Next we learn how magnetic fields arise from charges in motion (a relative
concept depending on the reference frame of the observer) and develop the
governing laws of magnetostatics (also an extension of Coulomb’s law seen
from different reference frames). The vector potential is introduced for mag-
netic field calculations from prescribed current configurations, and notions
of magnetization and inductance are subsequently developed and applied in
quasi-static settings.

Just like time-varying electric fields imply time-varying charge densities
(or vice versa) in electro-quasi-statics (EQS), time-varying currents imply
time-varying magnetic flux in magneto-quasi-statics (MQS). We also learn
that time-varying magnetic-flux is accompanied by time varying electric fields
— a key finding of Faraday’s called induced field with paradigm shifting
ramifications and applications — and requires the modification of curl-free
electric field condition into a dynamic equation known as Faraday’s law.

Finally, the full set of Maxwell’s equations is reached after adding a
time-varying electric field term to the curl equation of magnetostatics. This
change, first introduced by Maxwell in order to make sure that the govern-
ing equations of electricity and magnetism are consistent with conservation
of charge, acknowledges the two-way coupling and feedback between electric
and magnetic fields: time-varying magnetic fields induce time-varying elec-
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tric fields — Faraday effect — and time-varying electric fields in turn induce
time-varying magnetic fields (call it the “Maxwell effect”) in order to sustain
electromagnetic field variations in regions far away from charges and current
loops — that is the way nature seems to work (and here we are to observe
all that thanks to Maxwell effect allowing us to be here).

A study of wave solutions of Maxwell’s equations follows, including plane
TEM waves in free space, linear and circular polarized waves, waves in con-
ducting media, normal incidence of waves on planar interfaces of homoge-
neous regions, energy and momentum transfer, guided waves in two-wire
transmission-line (TL) systems, transient response on TL circuits, resonant
oscillations in TL cavities, sinusoidal steady-state analysis of TL’s and dis-
tributed circuits, Smith Chart applications, and finally losses in TL systems.

That is the full scope of the 39 lectures of ECE 329 — the course ends
with an intensive study of distributed circuit concepts based on transmission
lines, a study that complements the lumped circuit techniques examined and
mastered in earlier courses.

ECE 329 is only the first half of our first-pass study of the fields and waves
topics essential in electrical engineering education. Important topics such as
radiation and antennas (generation details of electromagnetic waves by time-
varying currents) and dispersion (frequency dependence of wave propagation
speeds in material media) are barely mentioned or not at all in ECE 329.
These constitute the main topics of the follow-on course, ECE 350.
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ECE 350:

ECE 350 starts with the discussion of electromagnetic radiation theory and
transmission antennas, continues with propagation and wave guidance ef-
fects (including dispersion, phase and group velocities, Doppler shifts, oblique
incidence, evanescence and tunneling effects, guided modes in parallel-plate,
rectangular, and dielectric slab waveguides), treats cavity fluctuations (in-
cluding resonant modes, blackbody radiation in 3D cavities, thermal noise),
and concludes with a discussion of antenna reception (including effective area,
available power, link equations).

Beyond ECE 329 and 350:

Students having gone through ECE 329 and 350 will find themselves ready to
encounter higher level courses in our curriculum focusing on different applica-
tion areas and frequency regimes of the implications of Maxwell’s equations.
It is a life-long endeavor to master these relationships which have precipitated
the scientific upheavals of the 20th century (relativity and quantum mechan-
ics) and have remained intact and essential despite the upheavals unlike most
aspects of classical physics. Our high speed electronics and communication
networks and devices are intrinsically and fundamentally based on fields and
wave concepts. Progress and innovation in these areas will require a deep
understanding of fields and waves and how they interact with novel materials
and structures.

Learn the basics and then go and invent the next thing!
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ECE 329 Lecture Notes — Summer 09/11, Erhan Kudeki Copyright c©2011 Reserved — no parts of this

set of lecture notes (Lects. 1-39) may be re-

produced without permission from the author.1 Vector fields and Lorentz force
• Interactions between charged particles can be described and modeled7

in terms of electric and magnetic fields just like gravity can be
formulated in terms of gravitational fields of massive bodies.

– In general, charge carrier dynamics and electromagnetic field vari-
ations8 account for all electric and magnetic phenomena observed
in nature and engineering applications.

• Electric and magnetic fields E and B generated by charge carriers —
electrons and protons at microscopic scales — permeate all space with
proper time delays, and combine additively.

!2 !1 1 2
x

!2

!1

1

2

y

– Consequently we associate with each location of space having Carte-
sian coordinates

(x, y, z) ≡ r

a pair of time-dependent vectors

E(r, t) = (Ex(r, t), Ey(r, t), Ez(r, t))

7Interactions can also be formulated in terms of past locations (i.e., trajectories) of charge carriers.
Unless the charge carriers are stationary — i.e., their past and present locations are the same — this
formulation becomes impractically complicated compared to field based descriptions.

8Time-varying fields can exist even in the absence of charge carriers as we will find out in this course
— light propagation in vacuum is a familiar example of this.
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and
B(r, t) = (Bx(r, t), By(r, t), Bz(r, t))

that we refer to as E and B for brevity (dependence on position
r and time t is implied). Maxwell’s equations:

∇ · E =
ρ

εo
∇ ·B = 0

∇×E = −∂B

∂t

∇×B = µoJ+ µoεo
∂E

∂t
.

such that

F = q(E+ v ×B),

with

µo ≡ 4π × 10−7 H
m

,

and

εo =
1

µoc2
≈ 1

36π × 109
F
m

,

in mksA units, where

c =
1

√
µoεo

≈ 3× 108
m
s

is the speed of light in free space.

(In Gaussian-cgs units B
c is used

in place of B above, while εo = 1
4π

and µo = 1
εoc2

= 4π
c2 .)

• Field vectors E and B and electric charge and current densities ρ and
J — describing the distribution and motions of charge carriers — are
related by (i.e., satisfy) a coupled set of linear constraints known as
Maxwell’s equations, shown in the margin.

– Maxwell’s equations are expressed in terms of divergence and curl
of field vectors — recall MATH 241 — or, equivalently, in terms
of closed surface and line integrals of the fields enclosing arbitrary
volumes V and surfaces S in 3D space, as you have first seen in
PHYS 212.

◦ Maxwell’s equations were “discovered” as a consequence of ex-
perimental and theoretical studies led by 19th century scien-
tists including Gauss, Ampere, Faraday, and Maxwell.

They remain intact and essential despite the scientific upheavals
(paradigm shifts) of 20th century: relativity and quantum physics9.

9Fields are are utilized in different ways in classical and quantum electrodynamics, but Maxwell’s field
equations remain the same under both paradigms. Relativity theory is an updated model of space and
time relations developed to achieve consistency with the implications of Maxwell’s equations.
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Given the charge and current densities ρ and J, Maxwell’s equations can be
solved for the fields E and B.

• Field solutions E and B in turn determine how a “test charge” q with
mass m, position r, and velocity v ≡ ṙ = dr

dt accelerates in accordance
with Lorentz force Lorentz

forceF = q(E + v ×B)

and Newton’s 2nd law F = d
dtmv (in classical electrodynamics). As

such Units in mksA sys-
tem:

– q[=]C=sA,

– E[=]N/C=V/m,

– B[=]V.s/m2=Wb/m2=T,

– ρ[=]C/m3,

– J[=]A/m2,

where
C, N, V, Wb, and T
are abbreviations for
Coulombs, Newtons, Volts, We-
bers , and Teslas,
respectively.

Charge q is quantized in units of

e = 1.602× 10−19 C, a relativistic

invariant.

– electric field E at any location r is the vector force per stationary
(i.e., v = 0) unit charge (i.e., q = 1 C),

– magnetic field B describes an additional force per unit charge
which is experienced by charges in motion (v '= 0) in the reference
frame — typically called the “lab frame” — where E and v are
measured.

Since Lorentz force equation has the same form in all inertial reference
frames10 (like all laws of physics, including Maxwell’s equations) while the
charge velocity v is clearly frame-of-reference dependent, it follows that the
values of fields E and B must also be dependent on the reference frame11.

10Coordinate systems in which particles not subjected to any force — or, if general relativistic effects
are to be retained, particles subjected to gravitational forces only — follow linearly varying trajectories.

11Given E and B measured in the lab, E′ and B′ measured by an observer moving through the lab
with a constant velocity v are well approximated by E′ ≈ E + v × B and B′ ≈ B − v×E

c2 so long as
|v| % c = 3× 108 m/s, the speed of light in free space (shown by relativistic analysis discussed in PHYS
325 — exact transformations are E′

‖ = E‖, B′
‖ = B‖, E′

⊥ = γ(E⊥ + v ×B⊥), B′
⊥ = γ(B⊥ − v×E⊥

c2 ) ).
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• Charge carrier positions r, velocities ṙ, and accelerations r̈ = F
m, as well

as forces F, fields E and B, and current density J are all described, in
general, in terms of 3D vectors.

• In Cartesian coordinates such vectors and vector functions (of posi-
tion r and/or time t) can be expressed in terms of mutually orthog-
onal unit vectors x̂, ŷ, and ẑ as in

r = (x, y, z) = xx̂+yŷ+zẑ and E = (Ex,Ey, Ez) = Exx̂+Eyŷ+Ezẑ etc.,

where

– |r| ≡
√
x2 + y2 + z2 and |E| ≡

√
E2

x + E2
y + E2

z etc., are vector
magnitudes,

– r̂ ≡ r
|r| and Ê ≡ E

|E| etc., are associated unit vectors,
– with dot products

◦ r̂ · r̂ = 1, Ê · Ê = 1, x̂ · x̂ = 1, etc., but
◦ x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0

– and cross products

x

y

z

x̂

ŷ
ẑ

r = (x, y, z)

UNIT VECTORS AND A POSITION
VECTOR IN RIGHT-HANDED
CARETESIAN COORDINATES 

= xx̂ + yŷ + zẑ

◦ x̂× ŷ = ẑ,
◦ ŷ × ẑ = x̂,
◦ ẑ × x̂ = ŷ,

adopting a right-handed convention (see the margin note in
the next page).
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• Recall that Right handed con-
vention: cross product vec-
tor points in the direction indi-
cated by the thumb of your right
hand when you rotate your fin-
gers from vector A toward vector
B through angle θ you decide to
use.

– Dot product A ·B is defined as |A| times |B| times the cosine of
angle θ between A and B.

A = |A|â

B = |B|b̂

|B| sin θ

|B| cos θ

θ

A · B = |A||B| cos θ

A× B = |A||B| sin θâ × n̂

â
n̂

CROSS PRODUCT: right-handed 
perpendicular area vector of 
the parallelogram formed
by co-planar vectors

DOT PRODUCT:product of 
projected vector lengths

x

y

z

x̂

ŷ
ẑ

r = (x, y, z)

UNIT VECTORS AND A POSITION
VECTOR IN RIGHT-HANDED
CARETESIAN COORDINATES 

= xx̂ + yŷ + zẑ

◦ Thus dot product is zero when angle θ is 90◦, as in the case
of x̂ and ŷ, etc.

– Cross product A × B is defined as a vector with a magnitude
|A| times |B| times the sine of angle θ between A and B and a
direction orthogonal to both A and B in a right-handed sense
(see margin note) .
◦ Thus cross product is zero when the vectors cross multiplied

are collinear (θ = 0◦) or anti-linear (θ = 180◦).

Example 1: Given the vectors v = (5, 10, 0) and B = (0, 0, 2) compute the cross and
dot products v ×B and v ·B.

Solution: Since we can also write v = 5x̂+ 10ŷ and B = 2ẑ, it follows that
v ×B = (5x̂+ 10ŷ)× 2ẑ = 10x̂× ẑ + 20ŷ × ẑ = −10ŷ + 20x̂.

Alternatively, using the well known determinant method for cross products,

v×B =

∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

5 10 0

0 0 2

∣∣∣∣∣∣∣∣∣∣∣

= x̂(10 ·2−0 ·0)− ŷ(5 ·2−0 ·0)+ ẑ(5 ·0−10 ·0) = 20x̂−10ŷ.

17



Also, v ·B = (5, 10, 0) · (0, 0, 2) = 5 · 0 + 10 · 0 + 0 · 2 = 0.

Having three non-colinear
force measurements Fi cor-
responding to three distinct
test particle velocities vi is
sufficient to determine the
fields E and B at any location
in space produced by distant
sources as illustrated by this
example.

x

y

z

F1 = 2x̂

v1 = 0

x

y

z

F2 = 2x̂ − 6ẑ

v2 = 2ŷ

x

y

z

F3 = 2x̂ + 9ŷv3 = 3ẑ

Example 2: A particle with charge q = 1 C passing through the origin r = (x, y, z) =
0 of the lab frame is observed to accelerate with forces

F1 = 2x̂, F2 = 2x̂− 6ẑ, F3 = 2x̂+ 9ŷN

when the velocity of the particle is

v1 = 0, v2 = 2ŷ, v3 = 3ẑ
m
s
,

in turns. Use the Lorentz force equation

F = q(E+ v ×B)

to determine the fields E and B at the origin.

Solution: Using the Lorentz force formula first with F = F1 and v =v1, we note that

2x̂ = (1)(E+ 0×B),

which implies that
E = 2x̂

N
C

= 2x̂
V
m
.

Next, we use
v ×B =

F

q
−E =

F

q
− 2x̂

with F2 = 2x̂− 6ẑ and v2 = 2ŷ, as well as E = 2x̂ V/m, to obtain

2ŷ ×B = −6ẑ ⇒ ŷ ×B = −3ẑ;
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likewise, with F3 = 2x̂+ 9ŷ and v3 = 3ẑ,

3ẑ ×B = 9ŷ ⇒ ẑ ×B = 3ŷ.

Substitute B = Bxx̂ +Byŷ +Bz ẑ in above relations to obtain

ŷ × (Bxx̂+ Byŷ + Bzẑ) = −Bxẑ +Bzx̂ = −3ẑ

and
ẑ × (Bxx̂+Byŷ + Bzẑ) = Bxŷ − Byx̂ = 3ŷ.

Matching the coefficients of x̂, ŷ, and ẑ in each of these relations we find that

Bx = 3
Wb
m2

, and By = Bz = 0.

Hence, vector
B = 3x̂

Wb
m2

.

x

y

z

F1 = 2x̂

v1 = 0

x

y

z

F2 = 2x̂ − 6ẑ

v2 = 2ŷ

x

y

z

F3 = 2x̂ + 9ŷv3 = 3ẑ

• In your first homework you will be asked to do a sequence of vector
exercises, including problems on volume, surface, and line integrals of
vector or scalar functions of space (i.e., “fields”). These problems should
be worked out with the help of your PHYS 212 and/or MATH 241 texts
and notes.

– This course assumes a background of PHYS 212 and MATH
241 (on electromagnetic fields and vector calculus) as well
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as ECE 210 (lumped circuits and linear systems con-
cepts including time- and frequency-domain approaches
and phasors).

• The main objective of the course is to build up a firm understand-
ing of electromagnetic field concepts introduced in PHYS 212,
and to learn how to use Maxwell’s equations under static and
time-varying conditions associated with unguided (i.e., wireless) and
guided (mainly transmission lines) electromagnetic waves. The study Prerequisites:

MATH 241
PHYS 212
ECE 210

Follow-on:
ECE 350

of guided waves is the key to extend the familiar lumped-circuit
concepts into the realm of distributed circuits. This is the first half
of a sequence of core electromagnetics courses in our curriculum, the
second course being the 3-of-5 elective ECE 350.

– Topical outline:

1. Static electric fields, potential, polarization, quasi-
static applications (10 lectures)

2. Static currents and magnetic fields (3 lectures)
3. Time-varying fields and Maxwell’s eqns (4 lectures)
4. Plane wave solutions of Maxwell’s eqns (9 lectures)
5. Guided waves in transmission lines and distributed

circuits (13 lectures)
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