
2 Static electric fields — Coulomb’s and Gauss’s
laws
Static electric fields E(r) are produced by static (non-time-varying) distri-
bution of charges and obey and the electrostatic laws shown in the margin
where ρ(r) denotes the net charge density in 3D volume. Over the next few Laws of

electrostatics:

∇ · E = ρ/εo
∇×E = 0

lectures we will find out how these laws emerge from Coulomb’s law.
At the most elementary level, each stationary point charge (electron or

proton) Q is surrounded by its radially directed electrostatic field E given
by Coulomb’s law, and in the presence of multiple charges the field vectors
of all the charges are added vectorially (linear superposition holds) to obtain
a superposition field E.

• Coulomb’s law specifies the electric field of a stationary charge Q at
the origin as

E(r) =
Q

4πεor2
r̂

as a function of position vector r = (x, y, z), where εo ≈ 1
36π×109

F/m
is a scaling constant known as permittivity of free space,

r = |r| =
√

x2 + y2 + z2

is radial distance from the charge, and r̂ = r
r radial unit vector pointing

away from the charge.

r = |r|r̂
Q

q

r̂

Force exerted by Q on q:

F = qE

E =
Q

4πεo|r|2
r̂

with electric field

With multiple Q’s superpose
multiple E’s

x
y

z

– This Coulomb field E(r) will exert a force F = qE(r) on any
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stationary “test charge” q brought within distance r of Q (see
figure in the margin). If qQ > 0, force F is

repulsive (directed along
r̂), if qQ < 0 it is at-
tractive — like charges
repel, unlike charges at-
tract.

The existence of a Coulomb field accompanying each charge carrier in its rest
frame1 is taken to be a fundamental property of charge carriers (established
by measurements).

• When multiple static charges Qn are present in a region, the force
on a stationary test charge q can be described as qE in terms of a
superposition field

E =
∑

n

Qn

4πεor2n
r̂n

written in terms of the magnitudes and directions of vectors rn pointing
from each Qn to q.

– Equivalently, we can write

q

x

y

z
r − rn Qn

rnr

Position vectors of charges
are referenced with respect
to a common origin O

O

E(r) =
∑

n

Qn

4πεo|r− rn|2
r− rn
|r− rn|

,

where r and rn now denote the locations of q and Qn with re-
spect to a common origin — this form is more convenient when
static electric field E is to be calculated for an arbitrary location
r (independent of the test charge notion).

1In non-inertial rest frames charge carriers will also produce an additional field proportional to the
acceleration of free particles observed in such frames (e.g., Boyer, Am. J. Phys., 47, 129, 1979; Gupta
and Padmanabhan, Phys. Rev. D, 57, 7241, 1998).
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Example 1: Charges Q1 = 4πεo and Q2 = −2Q1 are located at coordinates r1 =
(1, 0, 0) = x̂ and r2 = (0, 1, 0) = ŷ, respectively. What is the expression for E(r)
and what is the explicit value of vector E(0)?

Solution: Field E due to Q1 and Q2 at an arbitrary point r can be obtained as

E(r) =
Q1(r− r1)

4πεo|r− r1|3
+

Q2(r− r2)

4πεo|r− r2|3

=
(r− x̂)

|r− x̂|3 −
2(r− ŷ)

|r− ŷ|3 =
(x− 1, y, z)

|(x− 1, y, z)|3 −
2(x, y − 1, z)

|(x, y − 1, z)|3 V/m.

At the origin where r = (0, 0, 0), this result gives

E(0, 0, 0) =
(−1, 0, 0)

|(−1, 0, 0)|3 −
2(0,−1, 0)

|(0,−1, 0)|3 = −x̂+ 2ŷV/m.

!2 !1 1 2
x

!2

!1

1

2

y

Field map of a dipole plus a
negative charge

!10 !5 5 10
x

!10

!5

5

10

y• The vector map shown in the margin depicts samples of unit vec-
tors Ê(r) ≡ E(r)

|E(r)| for the field E(r) obtained in Example 1 on a suit-
able grid established on xy-plane — such plots are useful or visualiza-
tion purposes. Note that arrows emanate out of the positive charge at
(x, y) = (1, 0) and converge upon the negative charge at (x, y) = (0, 1).

– Electrostatic fields can be alternatively visualized in terms of so-
called field lines or flux lines, continuous curves which are drawn
tangential to unit vectors Ê(r) at every position r. Try tracing
out the flux lines over the vector map shown in the margin!
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• According to Coulomb’s law, electrostatic field of a charge Q placed at
the origin points out in the radial direction r̂ away from the origin and
has a magnitude

Er =
Q

4πεor2

that depends on radial distance r, but it does not depend on direction
r̂. The product of Er with εo and the surface area of a sphere at radius
r, namely, S = 4πr2, yields

εoErS = Q

independent of the radius of the sphere. Let’s re-write the same result
as

Q

∮

S E · dS =
Q

εo

S

E, dS

Q

∮

S′ E · dS =
Q

εo

S ′

E, dS

Q

∮

S′′′ E · dS = 0

S ′′′

E, dS

Surface integral depends
only on the net amount of
charge contained within
the surface --- charges
outside the surface don’t
matter; surface shape doesn’t
matter; also charge motion
within the surface does not
matter.

(a)

(b)

(d)

Q

∮

S′′ E · dS =
Q

εo

S ′′

E, dS

(c)

εo

∮

S
E · dS = Q,

where

– the “closed surface integral”
∮
S E · dS is called the flux of E over

surface S bounding the volume V = 4π
3 r

3,
– which in turn denotes the limiting value of the sum of dot products
Ej ·∆Sj computed over all surface elements of S having incremen-
tal areas |∆Sj| and unit vectors ∆Sj/|∆Sj| pointing away from
volume V — the limiting value is obtained as all |∆Sj| approach
zero (i.e., with increasingly finer subdivision of S into |∆Sj| ele-
ments).
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Although we obtained the equality εo
∮
S E ·dS = Q above only for a spherical

surface S centered about charge Q, we can easily convince ourselves — see the
sketches on the right — that the equality should hold even when we distort
the shape of surface S and/or displace Q away from the center so long as
we do not move Q outside of S. All such variations are permitted because
of inverse r-square dependence of the Coulomb’s law and additive nature of
fields, and if Q is moved outside the surface then the surface integral (flux)
simply goes to zero.

• Hence, given an arbitrary shaped volume V enclosed by an arbitrary
shaped surface S and including a net electrical charge QV , and defining
a displacement field Displacement

D = εoE[=] Fm
V
m = C

m2D ≡ εoE,

we obtain ∮

S
D · dS = QV , Gauss’s law

a constraint known as Gauss’s law. At this stage, the introduction of Gauss’s law
D is simply a notational convenience.

Gauss’s law offers an alternative to implementing an explicit sum of Coulomb
fields for calculating static field distributions E or D = εoE — the alternative
method can be used when charge distributions have simplifying symmetry
properties as will be illustrated in the next set of examples.

Also, later on we will learn that Gauss’s law is valid even when charges
QV within volume V are non-static (i.e., in motion), a condition under which
Coulomb’s law is no longer valid.
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x

y

z

r = r(x̂ cos φ + ŷ sin φ)
φ

∆z =
Q

λ

Q point charge in C

λ charge density in C/m

Example 2: Charged particles Q are located uniformly along the z-axis with an
average line density of λ C/m extending from z = −∞ to +∞. We will compute
the electrostatic field E of this charge distribution at a distance r from z-axis.

Having an average charge density of λ C/m implies that individual charges Q
are spaced from one another by a distance ∆z = Q

λ along the z-axis. Assuming
that charge locations are z = n∆z, where n is any integer, and using Coulomb’s
law, we find that

E(r) =
∞∑

n=−∞

Q

4πεo|r− ẑn∆z|2
r− ẑn∆z

|r− ẑn∆z| =
∞∑

n=−∞

λ∆z(r− ẑn∆z)

4πεo|r− ẑn∆z|3 ,

which, for position r = r(x̂ cosφ + ŷ sinφ) on xy-plane, at a distance r to the
z-axis, reduces to

E =
∞∑

n=−∞

λr(x̂ cosφ+ ŷ sinφ)

4πεo(r2 + n2∆z2)3/2
∆z (microscopic field)

because the ẑ component of E proportional to n∆z cancels out (as a result of
summation) due to symmetry in n. This field is “purely radial” in the direction

r̂ ≡ x̂ cosφ+ ŷ sinφ

perpendicular to z-axis, and it can be evaluated, for r ' ∆z, as an integral
(remember that sums of infinitesimals are in effect definite integrals)

r̂

∫ ∞

−∞

λr

4πεo(r2 + z2)3/2
dz = r̂

λr

4πεo

∫ ∞

−∞

dz

(r2 + z2)3/2︸ ︷︷ ︸
= r̂

λ

2πεor
. (macroscopic

2/r2 field)
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• The result
E = r̂

λ

2πεor

obtained above, valid for r ' ∆z, and labelled as macroscopic
field , also represents at any r (and z) the space average of the mi-
croscopic field taken over small volumes having dimensions of many
∆z’s (inter-particle separations).

– In such a spatial average the rapidly varying structure of micro-
scopic field (in particular at small r, caused by the discrete nature
of charge distribution) is smoothed out as if electrical charge were
distributed in space with a continuous density of λ C/m.

– In realistic applications involving colossal numbers of charge car-
riers (of the order of 1023 in macroscopic chunks of solids) it is
practical (and desirable) to focus our attention on macroscopic
rather than microscopic fields.

We next illustrate how to obtain the macroscopic field E = r̂ λ
2πεor

directly by using Gauss’s law.

7



λ
r

L

z

S
Er =

λ

2πεor

x

y
φ

Solution using Gauss’s law:

We first notice that macroscopic electric field of a charge distribution along the z-axis
having an average charge density of λ C/m should be pointing in radial direction
r̂ away from the z-axis (why?).

Also its magnitude Er should be independent of azimuth angle φ by symmetry.

As a consequence, we can apply Gauss’s law
∮

S
D · dS = QV

as
εoEr2πrL = λL

over the surface S of a cylindrical volume V of some length L and radius r
centered about the z-axis as shown in the margin — notice that our “clever”
choice of surface S in this problem resulted in the evaluation of the flux integral
in Gauss’s law without doing any calculus.

Clearly, this leads to (as obtained before using a line integral)

Er =
λ

2πεor
and E =

λ

2πεor
r̂.
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