3 Gauss’s law and static charge densities

We continue with examples illustrating the use of Gauss’s law in macroscopic
field calculations:

Example 1: Point charges () are distributed over x = 0 plane with an average surface
charge density of p, C/m?. Determine the macroscopic electric field E of this
charge distribution using Gauss’s law.

Solution: First, invoking Coulomb’s law, we convince ourselves that the field produced
by surface charge density p, C/m? on x = 0 plane will be of the form E = 2E, ()
where F,(z) is an odd function of = because y- and z-components of the field will
cancel out due to the symmetry of the charge distribution. In that case we can
apply Gauss’s law over a cylindrical integration surface S having circular caps of
area A parallel to x = 0, and obtain

}I{D dS =Qy = e FE.(v)A—e,E.(—x)A = Aps,
S
which leads, with E,(—z) = —E,(z), to

E.(x) = 2p_s for x > 0.

60
Hence, in vector form
E = i'&sgn(x),
2€,

where sgn(x) is the signum function, equal to £1 for x = 0.

Note that the macroscopic field calculated above is discontinuous at x = 0 plane
containing the surface charge ps, and points away from the same surface on both

sides.




Example 2: Point charges ) are distributed throughout an infinite slab of width W
located over —% <z < % with an average charge density of p C/m?. Determine
the macroscopic electric field E of the charged slab inside and outside.

Solution: Symmetry arguments based on Coulomb’s law once again indicates that we
expect a solution of the form E = 2F,(z) where F,(z) is an odd function of .

In that case, applying Gauss’s law with a cylindrical surface S having circular caps
of area A parallel to z = 0 extending between —z and = < %, we obtain

7{D dS =Qv = FE(2v)A— e, E.(—x)A = p2xA,
S

which leads, with E,(—x) = —E,(x), to

W
Ex(:c):@ for 0 <z < —.

€ 2
For x > %,
§DdS=Qr = GE@)A- B (-a)d=AWp,
leading to ’
E.(z)= p;jo/ for x > %

_ 5P _w
L5 for x < —3
_ A _ ~PT w W
E = :cEx(:C) = I’g, for — o < < o
4P w
T, for v > 5.

=

A

vo| 5




Note that the field solution depicted in the margin in terms of E,(x) plot is a con-
tinuous function of x as opposed to the discontinuous E,(x) solution obtained in

Example 1 for the macroscopic field of a surface charge.

e In future calculations of electrostatic fields, we can use our previous
results, namely

— Coulomb field

E=r of a point charge @,
Ame, r?
— Field
E=r of constant line density A,
2TELT
— Field
E = .%Qp—ssgn(x) of constant surface density ps,
€o
— Field

x
E = 222 of constant volume density p
€o
as building blocks — that is, the above field equations can be super-
posed to determine the field structure of charge distributions p(z,y, z)
that can be expressed as superpositions of simpler charge distributions
with known field structures. Some examples...
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Example 3: Consider a pair of surface charges p, > 0 and —p, C/m? of equal mag-
nitudes placed on x = —% and x = % surfaces. Determine the electric field of

this charge distribution depicted in the margin.

Solution: The field of charge density p, C/m? on z = —% plane should be

. Ps w
E. . =2—sgn(x+ —),
pointing away from the discontinuity surface at x = —% on both sides. Likewise,

the field of charge density —p, C/m? on 2 = % plane should be

. Ps w
E_=—-1—s - —),
:19260 gn(z 5 )
pointing toward x = % surface from both sides. Superposing the two fields, we
find that
gl for — W <gp <l 0 x
E=E,+E_= &’ 2 27 = 3 rect(—
- { 0, otherwise, €o ( w )

as depicted in the margin.

Note that the field lines of our solution point from positive charges on one surface to
the negative charges resting on the other surface — this field has the structure

of fields encountered in parallel plate capacitors that we will be studying soon.

ps >0
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Example 4: An infinite charged slab of width W7, located over —W; < x < 0, has
a negative volumetric charge density of —p; C/m?, p; > 0. A second slab of
width W5 and positive charge density po is located over 0 < x < W5 as shown
in the margin. Compute the electric field of this static charge configuration if

Wip1 = Wapso, implying that the entire system is charge neutral (i.e., a net charge
of zero).

Solution: We note that the field of slab W7 can be written as

e for v < —W;
° w
_ ~ p1 (T4
E, = —x%z), for — Wi <x<0
i“pé—zvl, for x > 0

rE=2, forx <0
- pa(—12)
Ey=¢a2—22 for 0 <z < W,
ip;—le%, for x > Ws.

Note that field strengths 2 1?/1 and pi% showing up in the expressions for E; and Eo
are equal because of the charge neutrahty condition Wip; = Wops.

Consequently, when we superpose E; and E,, the fields cancel out outside the region
—Wy < & < Wh, so that the total field becomes (as depicted in the margin)

et e W <2 < 0

E=E, +E,=<372"  {,0<2<W,

€o

0, otherwise.

—p1<0

p2>0

X
piWy
2¢,
-W;
“ng($)
p2Wa
2¢,
WQ X
E,(z)
-W A W,
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Gauss’ Law in terms of

e Charge density formalism which we find convenient to use for macro- charge density:

scopic field calculations can also be “adjusted” to describe the distri-
butions of isolated point charges via the use of impulses or delta

functions in space. j{D -dS = / pdV
S 1%
— For example

plx,y,2) = Qd(x — x,)0(y — y,)0(2 — 2,)

can be regarded as a 3D volumetric charge density function rep-
resenting a point charge () located at a coordinate

r=(2,9,2) = (T, Yo, 20) = To.

o This is justified because we can regard d(x — x,) to be zero
everywhere except at x* = x,. By extension, the product

5($-——1@)5(y-—-y0)5(Z-—-zo)

3D impulse here

is zero everywhere except at r = r, = (x,, Y,, 2o) — therefore where point charge
. . Q is localized over
the density function p(z,y, z) defined above behaves correctly a region of zero

to indicate the absence of charges everywhere with the ex- volume

ception of r,. Furthermore, the area property of the impulse
implies that the volume integral of the charge density yields

/pdv B ///Q5(93 — Z)0(Y — Yo)0(2 — 20)dxdydz = Q

as it should.



o Notice that the shifted impulses §(z

mfl

T,), etc.,
units in order to maintain dimensional consistency in the
above expression.

— Another example is
p(x,y,2) = ps(y, 2)0(x — )

representing a surface charge density of p,(y, z) C/m? on z = z,
plane.

Ps >

must have P(T,y,2) = ps(y, 2)0(x — x,)

Example 5: Figure in the margin depicts (for the d = 1) the E-field of a pair of
charges +Q) located at (0,0, i%) derived from

Q(r — %2) —Q(r +42)
Are,|v — 4213 dme,|r + 423
Q (l’,y,Z—%) (I’ yaz+d)

= [ NER ‘JW%

dmeo |(z,y, 2 = )P @y, 2+ 9)

E(r) =

Determine the electric flux f E - dS across the entire xy-plane using dS =
—Zdxdy.

Solution: Because of linearity, the flux we want to calculate equals the sum of the flux
due to charge @ at (0,0, g) above zy-plane and the flux due to charge —() at

(0,0, —g) above xy-plane.
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Since by Gauss’s law 555 E.-dS = GQ for any S surrounding @), we can, by symmetry,

infer that Q
E - (—zdzd
/ B (adady) = 5]

when only charge () is considered — the logic here is, half of flux f E - dS
emanating from charge @) should go up and the remaining half should go down
crossing the xy-plane in downward direction. Likewise, since 555 E-dS = EOQ for
any S surrounding —(@), again by symmetry, we can infer

/ E . (—zZdzdy) = @
wy

2€,

due to charge —() only — the logic in this case is, half of flux Q “entering” charge
—( is “coming from” above crossing the xy- plane in downward direction.

Thus, by superposition, we find total
/ E . (—zdxdy) = QJFQ: 9
xy

2¢, 2¢, €,

The above result can be confirmed directly by evaluating the integral

T, d T
/ E(z,y,0) - (—2dzdy) = 4S€o[|(x yy’__))‘g ‘((m ’;’ 2))|3] (—Z2dxdy)

Qd/ r
- d dy = d
47T€o / | x, 1, _%l ray %0 J,—o (7,2 + (%1)2)3/2 r

60'
Just before the last step we have replaced dxdy by rdrd¢, where r = /22 + 92, and

carried out the ¢ integration before completing the r integration as a last step (which

you should verify).




