
3 Gauss’s law and static charge densities
We continue with examples illustrating the use of Gauss’s law in macroscopic
field calculations:

ρS

Ex(x) =
ρs

2εo

A

z
S

x

y

Ex(x)
ρs

2εo
sgn(x)

x

Example 1: Point charges Q are distributed over x = 0 plane with an average surface
charge density of ρs C/m2. Determine the macroscopic electric field E of this
charge distribution using Gauss’s law.

Solution: First, invoking Coulomb’s law, we convince ourselves that the field produced
by surface charge density ρs C/m2 on x = 0 plane will be of the form E = x̂Ex(x)
where Ex(x) is an odd function of x because y- and z-components of the field will
cancel out due to the symmetry of the charge distribution. In that case we can
apply Gauss’s law over a cylindrical integration surface S having circular caps of
area A parallel to x = 0, and obtain

∮

S
D · dS = QV ⇒ εoEx(x)A− εoEx(−x)A = Aρs,

which leads, with Ex(−x) = −Ex(x), to

Ex(x) =
ρs
2εo

for x > 0.

Hence, in vector form
E = x̂

ρs
2εo

sgn(x),

where sgn(x) is the signum function, equal to ±1 for x ≷ 0.

Note that the macroscopic field calculated above is discontinuous at x = 0 plane
containing the surface charge ρs, and points away from the same surface on both
sides.
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Example 2: Point charges Q are distributed throughout an infinite slab of width W
located over −W

2 < x < W
2 with an average charge density of ρ C/m3. Determine

the macroscopic electric field E of the charged slab inside and outside.

Solution: Symmetry arguments based on Coulomb’s law once again indicates that we
expect a solution of the form E = x̂Ex(x) where Ex(x) is an odd function of x.

In that case, applying Gauss’s law with a cylindrical surface S having circular caps
of area A parallel to x = 0 extending between −x and x < W

2 , we obtain
∮

S
D · dS = QV ⇒ εoEx(x)A− εoEx(−x)A = ρ2xA,

which leads, with Ex(−x) = −Ex(x), to

Ex(x) =
ρx

εo
for 0 < x <

W

2
.

For x > W
2 , ∮

S
D · dS = QV ⇒ εoEx(x)A− εoEx(−x)A = AWρ,

leading to
Ex(x) =

ρW

2εo
for x >

W

2
.

These results can be combined as

E = x̂Ex(x) =






−x̂ρW
2εo

, for x < −W
2

x̂ρx
εo

, for − W
2 < x < W

2

−x̂ρW
2εo

, for x > W
2 .
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Note that the field solution depicted in the margin in terms of Ex(x) plot is a con-
tinuous function of x as opposed to the discontinuous Ex(x) solution obtained in
Example 1 for the macroscopic field of a surface charge.

• In future calculations of electrostatic fields, we can use our previous
results, namely

– Coulomb field

E = r̂
Q

4πεor2
of a point charge Q,

– Field
E = r̂

λ

2πεor
of constant line density λ,

– Field

E = x̂
ρs
2εo

sgn(x) of constant surface density ρs,

– Field
E = x̂

ρx

εo
of constant volume density ρ

as building blocks — that is, the above field equations can be super-
posed to determine the field structure of charge distributions ρ(x, y, z)
that can be expressed as superpositions of simpler charge distributions
with known field structures. Some examples...
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Example 3: Consider a pair of surface charges ρs > 0 and −ρs C/m2 of equal mag-
nitudes placed on x = −W

2 and x = W
2 surfaces. Determine the electric field of

this charge distribution depicted in the margin.

Solution: The field of charge density ρs C/m2 on x = −W
2 plane should be

E+ = x̂
ρs
2εo

sgn(x+
W

2
),

pointing away from the discontinuity surface at x = −W
2 on both sides. Likewise,

the field of charge density −ρs C/m2 on x = W
2 plane should be

E− = −x̂
ρs
2εo

sgn(x− W

2
),

pointing toward x = W
2 surface from both sides. Superposing the two fields, we

find that

E = E+ + E− =

{
x̂ρs
εo

, for − W
2 < x < W

2 ,

0, otherwise,
= x̂

ρs
εo

rect(
x

W
)

as depicted in the margin.

Note that the field lines of our solution point from positive charges on one surface to
the negative charges resting on the other surface — this field has the structure
of fields encountered in parallel plate capacitors that we will be studying soon.
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Example 4: An infinite charged slab of width W1, located over −W1 < x < 0, has
a negative volumetric charge density of −ρ1 C/m3, ρ1 > 0. A second slab of
width W2 and positive charge density ρ2 is located over 0 < x < W2 as shown
in the margin. Compute the electric field of this static charge configuration if
W1ρ1 = W2ρ2, implying that the entire system is charge neutral (i.e., a net charge
of zero).

Solution: We note that the field of slab W1 can be written as

E1 =






x̂ρ1W1

2εo
, for x < −W1

−x̂
ρ1(x+

W1
2 )

εo
, for −W1 < x < 0

−x̂ρ1W1

2εo
, for x > 0

as depicted in the margin. Likewise, the field of slab W2 is

E2 =






−x̂ρ2W2

2εo
, for x < 0

x̂
ρ2(x−W2

2 )
εo

, for 0 < x < W2

x̂ρ2W2

2εo
, for x > W2.

Note that field strengths ρ1W1

2εo
and ρ2W2

2εo
showing up in the expressions for E1 and E2

are equal because of the charge neutrality condition W1ρ1 = W2ρ2.

Consequently, when we superpose E1 and E2, the fields cancel out outside the region
−W1 < x < W2, so that the total field becomes (as depicted in the margin)

E = E1 + E2 =






−x̂ρ1(x+W1)
εo

, for −W1 < x < 0

x̂ρ2(x−W2)
εo

, for 0 < x < W2

0, otherwise.
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Gauss’ Law in terms of
charge density:

∮

S
D · dS =

∫

V
ρdV

• Charge density formalism which we find convenient to use for macro-
scopic field calculations can also be “adjusted” to describe the distri-
butions of isolated point charges via the use of impulses or delta
functions in space.

Q
x

y

z

3D impulse here
where point charge
Q is localized over
a region of zero 
volume

ρ(x, y, z) = Qδ(x)δ(y)δ(z)

– For example

ρ(x, y, z) = Qδ(x− xo)δ(y − yo)δ(z − zo)

can be regarded as a 3D volumetric charge density function rep-
resenting a point charge Q located at a coordinate

r = (x, y, z) = (xo, yo, zo) ≡ ro.

◦ This is justified because we can regard δ(x − xo) to be zero
everywhere except at x = xo. By extension, the product

δ(x− xo)δ(y − yo)δ(z − zo)

is zero everywhere except at r = ro = (xo, yo, zo) — therefore
the density function ρ(x, y, z) defined above behaves correctly
to indicate the absence of charges everywhere with the ex-
ception of ro. Furthermore, the area property of the impulse
implies that the volume integral of the charge density yields
∫

ρdV =

∫ ∫ ∫
Qδ(x− xo)δ(y − yo)δ(z − zo)dxdydz = Q

as it should.
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◦ Notice that the shifted impulses δ(x − xo), etc., must have
m−1 units in order to maintain dimensional consistency in the
above expression.

– Another example is

ρ(x, y, z) = ρs(y, z)δ(x− xo)

representing a surface charge density of ρs(y, z) C/m2 on x = xo

plane.
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Example 5: Figure in the margin depicts (for the d = 1) the Ê-field of a pair of
charges ±Q located at (0, 0,±d

2) derived from

E(r) =
Q(r− d

2 ẑ)

4πεo|r− d
2 ẑ|3

+
−Q(r+ d

2 ẑ)

4πεo|r+ d
2 ẑ|3

=
Q

4πεo
[
(x, y, z − d

2)

|(x, y, z − d
2)|3

−
(x, y, z + d

2)

|(x, y, z + d
2)|3

]V/m.

Determine the electric flux
∫
xy E · dS across the entire xy-plane using dS =

−ẑdxdy.

Solution: Because of linearity, the flux we want to calculate equals the sum of the flux
due to charge Q at (0, 0, d2) above xy-plane and the flux due to charge −Q at
(0, 0,−d

2) above xy-plane.
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Since by Gauss’s law
∮
S E · dS = Q

εo
for any S surrounding Q, we can, by symmetry,

infer that ∫

xy
E · (−ẑdxdy) =

Q

2εo

when only charge Q is considered — the logic here is, half of flux
∮
S E · dS = Q

εo
emanating from charge Q should go up and the remaining half should go down
crossing the xy-plane in downward direction. Likewise, since

∮
S E · dS = −Q

εo
for

any S surrounding −Q, again by symmetry, we can infer
∫

xy
E · (−ẑdxdy) =

Q

2εo

due to charge −Q only — the logic in this case is, half of flux Q
εo

“entering” charge
−Q is “coming from” above crossing the xy-plane in downward direction.

Thus, by superposition, we find total
∫

xy
E · (−ẑdxdy) =

Q

2εo
+

Q

2εo
=

Q

εo
.

The above result can be confirmed directly by evaluating the integral
∫

xy
E(x, y, 0) · (−ẑdxdy) =

∫

xy

Q

4πεo
[
(x, y,−d

2)

|(x, y,−d
2)|3

−
(x, y, d2)

|(x, y, d
2)|3

] · (−ẑdxdy)

=
Q

4πεo

∫

xy

d

|(x, y,−d
2)|3

dxdy =
Qd

2εo

∫ ∞

r=0

r

(r2 + (d2)
2)3/2

dr

=
Q

εo
.

Just before the last step we have replaced dxdy by rdrdφ, where r ≡
√

x2 + y2, and
carried out the φ integration before completing the r integration as a last step (which
you should verify).
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