3 Gauss's law and static charge densities

We continue with examples illustrating the use of Gauss's law in macroscopic field calculations:

Example 1: Point charges Q are distributed over $x=0$ plane with an average surface charge density of $\rho_{s} \mathrm{C} / \mathrm{m}^{2}$. Determine the macroscopic electric field \mathbf{E} of this charge distribution using Gauss's law.

Solution: First, invoking Coulomb's law, we convince ourselves that the field produced by surface charge density $\rho_{s} \mathrm{C} / \mathrm{m}^{2}$ on $x=0$ plane will be of the form $\mathbf{E}=\hat{x} E_{x}(x)$ where $E_{x}(x)$ is an odd function of x because y - and z-components of the field will cancel out due to the symmetry of the charge distribution. In that case we can apply Gauss's law over a cylindrical integration surface S having circular caps of area A parallel to $x=0$, and obtain

$$
\oint_{S} \mathbf{D} \cdot d \mathbf{S}=Q_{V} \Rightarrow \epsilon_{o} E_{x}(x) A-\epsilon_{o} E_{x}(-x) A=A \rho_{s},
$$

which leads, with $E_{x}(-x)=-E_{x}(x)$, to

$$
E_{x}(x)=\frac{\rho_{s}}{2 \epsilon_{o}} \text { for } x>0 .
$$

Hence, in vector form

$$
\mathbf{E}=\hat{x} \frac{\rho_{s}}{2 \epsilon_{o}} \operatorname{sgn}(x)
$$

where $\operatorname{sgn}(x)$ is the signum function, equal to ± 1 for $x \gtrless 0$.
Note that the macroscopic field calculated above is discontinuous at $x=0$ plane containing the surface charge ρ_{s}, and points away from the same surface on both sides.

Example 2: Point charges Q are distributed throughout an infinite slab of width W located over $-\frac{W}{2}<x<\frac{W}{2}$ with an average charge density of $\rho \mathrm{C} / \mathrm{m}^{3}$. Determine the macroscopic electric field \mathbf{E} of the charged slab inside and outside.

Solution: Symmetry arguments based on Coulomb's law once again indicates that we expect a solution of the form $\mathbf{E}=\hat{x} E_{x}(x)$ where $E_{x}(x)$ is an odd function of x.

In that case, applying Gauss's law with a cylindrical surface S having circular caps of area A parallel to $x=0$ extending between $-x$ and $x<\frac{W}{2}$, we obtain

$$
\oint_{S} \mathbf{D} \cdot d \mathbf{S}=Q_{V} \Rightarrow \epsilon_{o} E_{x}(x) A-\epsilon_{o} E_{x}(-x) A=\rho 2 x A
$$

which leads, with $E_{x}(-x)=-E_{x}(x)$, to

$$
E_{x}(x)=\frac{\rho x}{\epsilon_{o}} \text { for } 0<x<\frac{W}{2} .
$$

For $x>\frac{W}{2}$,

$$
\oint_{S} \mathbf{D} \cdot d \mathbf{S}=Q_{V} \Rightarrow \epsilon_{o} E_{x}(x) A-\epsilon_{o} E_{x}(-x) A=A W \rho
$$

leading to

$$
E_{x}(x)=\frac{\rho W}{2 \epsilon_{o}} \text { for } x>\frac{W}{2} .
$$

These results can be combined as

$$
\mathbf{E}=\hat{x} E_{x}(x)= \begin{cases}-\hat{x} \frac{\rho W}{2 \epsilon_{o}}, & \text { for } x<-\frac{W}{2} \\ \hat{x} \frac{\rho x}{\epsilon_{o}}, & \text { for }-\frac{W}{2}<x<\frac{W}{2} \\ -\hat{x} \frac{\rho W}{2 \epsilon_{o}}, & \text { for } x>\frac{W}{2} .\end{cases}
$$

Note that the field solution depicted in the margin in terms of $E_{x}(x)$ plot is a continuous function of x as opposed to the discontinuous $E_{x}(x)$ solution obtained in Example 1 for the macroscopic field of a surface charge.

- In future calculations of electrostatic fields, we can use our previous results, namely
- Coulomb field

$$
\mathbf{E}=\hat{r} \frac{Q}{4 \pi \epsilon_{o} r^{2}} \text { of a point charge } Q
$$

- Field

$$
\mathbf{E}=\hat{r} \frac{\lambda}{2 \pi \epsilon_{o} r} \text { of constant line density } \lambda
$$

- Field

$$
\mathbf{E}=\hat{x} \frac{\rho_{s}}{2 \epsilon_{o}} \operatorname{sgn}(x) \text { of constant surface density } \rho_{s},
$$

- Field

$$
\mathbf{E}=\hat{x} \frac{\rho x}{\epsilon_{o}} \text { of constant volume density } \rho
$$

as building blocks - that is, the above field equations can be superposed to determine the field structure of charge distributions $\rho(x, y, z)$ that can be expressed as superpositions of simpler charge distributions with known field structures. Some examples...

Example 3: Consider a pair of surface charges $\rho_{s}>0$ and $-\rho_{s} \mathrm{C} / \mathrm{m}^{2}$ of equal magnitudes placed on $x=-\frac{W}{2}$ and $x=\frac{W}{2}$ surfaces. Determine the electric field of this charge distribution depicted in the margin.

Solution: The field of charge density $\rho_{s} \mathrm{C} / \mathrm{m}^{2}$ on $x=-\frac{W}{2}$ plane should be

$$
\mathbf{E}_{+}=\hat{x} \frac{\rho_{s}}{2 \epsilon_{o}} \operatorname{sgn}\left(x+\frac{W}{2}\right)
$$

pointing away from the discontinuity surface at $x=-\frac{W}{2}$ on both sides. Likewise, the field of charge density $-\rho_{s} \mathrm{C} / \mathrm{m}^{2}$ on $x=\frac{W}{2}$ plane should be

$$
\mathbf{E}_{-}=-\hat{x} \frac{\rho_{s}}{2 \epsilon_{o}} \operatorname{sgn}\left(x-\frac{W}{2}\right)
$$

pointing toward $x=\frac{W}{2}$ surface from both sides. Superposing the two fields, we find that

$$
\mathbf{E}=\mathbf{E}_{+}+\mathbf{E}_{-}= \begin{cases}\hat{x} \frac{\rho_{s}}{\epsilon_{o}}, & \text { for }-\frac{W}{2}<x<\frac{W}{2}, \\ 0, & \text { otherwise },\end{cases}
$$

as depicted in the margin.
Note that the field lines of our solution point from positive charges on one surface to the negative charges resting on the other surface - this field has the structure of fields encountered in parallel plate capacitors that we will be studying soon.

Example 4: An infinite charged slab of width W_{1}, located over $-W_{1}<x<0$, has a negative volumetric charge density of $-\rho_{1} \mathrm{C} / \mathrm{m}^{3}, \rho_{1}>0$. A second slab of width W_{2} and positive charge density ρ_{2} is located over $0<x<W_{2}$ as shown in the margin. Compute the electric field of this static charge configuration if $W_{1} \rho_{1}=W_{2} \rho_{2}$, implying that the entire system is charge neutral (i.e., a net charge of zero).

Solution: We note that the field of slab W_{1} can be written as

$$
\mathbf{E}_{1}= \begin{cases}\hat{x} \frac{\rho_{1} W_{1}}{2 \epsilon_{o}}, & \text { for } x<-W_{1} \\ -\hat{x} \frac{\rho_{1}\left(x+\frac{W_{1}}{2}\right)}{2}, & \text { for }-W_{1}<x<0 \\ -\hat{x} \frac{\rho_{1} W_{1}}{2 \epsilon_{o}}, & \text { for } x>0\end{cases}
$$

as depicted in the margin. Likewise, the field of slab W_{2} is

$$
\mathbf{E}_{2}= \begin{cases}-\hat{x}^{\frac{\rho_{2} W_{2}}{} \frac{\rho_{0}}{2 \epsilon_{o}},}, & \text { for } x<0 \\ \hat{\rho_{2}\left(x-\frac{W_{2}}{2}\right)}, & \text { for } 0<x<W_{2} \\ \hat{x} \frac{\rho_{2} W_{o}}{2 \epsilon_{o}}, & \text { for } x>W_{2} .\end{cases}
$$

Note that field strengths $\frac{\rho_{1} W_{1}}{2 \epsilon_{o}}$ and $\frac{\rho_{2} W_{2}}{2 \epsilon_{o}}$ showing up in the expressions for \mathbf{E}_{1} and \mathbf{E}_{2} are equal because of the charge neutrality condition $W_{1} \rho_{1}=W_{2} \rho_{2}$.

Consequently, when we superpose \mathbf{E}_{1} and \mathbf{E}_{2}, the fields cancel out outside the region $-W_{1}<x<W_{2}$, so that the total field becomes (as depicted in the margin)

$$
\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}= \begin{cases}-\hat{x}_{1}\left(x+W_{1}\right) \\ \hat{\rho_{2}\left(x-W_{0}\right)}, & \text { for }-W_{1}<x<0 \\ 0, & \text { for } 0<x<W_{2} \\ 0, & \text { otherwise }\end{cases}
$$

- Charge density formalism which we find convenient to use for macroscopic field calculations can also be "adjusted" to describe the distributions of isolated point charges via the use of impulses or delta functions in space.
- For example

$$
\rho(x, y, z)=Q \delta\left(x-x_{o}\right) \delta\left(y-y_{o}\right) \delta\left(z-z_{o}\right)
$$

can be regarded as a 3D volumetric charge density function representing a point charge Q located at a coordinate

$$
\mathbf{r}=(x, y, z)=\left(x_{o}, y_{o}, z_{o}\right) \equiv \mathbf{r}_{o} .
$$

- This is justified because we can regard $\delta\left(x-x_{o}\right)$ to be zero everywhere except at $x=x_{o}$. By extension, the product

$$
\delta\left(x-x_{o}\right) \delta\left(y-y_{o}\right) \delta\left(z-z_{o}\right)
$$

is zero everywhere except at $\mathbf{r}=\mathbf{r}_{o}=\left(x_{o}, y_{o}, z_{o}\right)$ - therefore the density function $\rho(x, y, z)$ defined above behaves correctly to indicate the absence of charges everywhere with the exception of \mathbf{r}_{o}. Furthermore, the area property of the impulse implies that the volume integral of the charge density yields
$\int \rho d V=\iiint Q \delta\left(x-x_{o}\right) \delta\left(y-y_{o}\right) \delta\left(z-z_{o}\right) d x d y d z=Q$
as it should.
$\rho(x, y, z)=Q \delta(x) \delta(y) \delta(z)$

3D impulse here where point charge
Q is localized over where point charge
Q is localized over a region of zero volume

Gauss' Law in terms of charge density:

$$
\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{V} \rho d V
$$

- Notice that the shifted impulses $\delta\left(x-x_{o}\right)$, etc., must have m^{-1} units in order to maintain dimensional consistency in the above expression.
- Another example is

$$
\rho(x, y, z)=\rho_{s}(y, z) \delta\left(x-x_{o}\right)
$$

representing a surface charge density of $\rho_{s}(y, z) \mathrm{C} / \mathrm{m}^{2}$ on $x=x_{o}$ plane.

$$
\rho(x, y, z)=\rho_{s}(y, z) \delta\left(x-x_{o}\right)
$$

Example 5: Figure in the margin depicts (for the $d=1$) the \hat{E}-field of a pair of charges $\pm Q$ located at $\left(0,0, \pm \frac{d}{2}\right)$ derived from

$$
\begin{aligned}
\mathbf{E}(\mathbf{r}) & =\frac{Q\left(\mathbf{r}-\frac{d}{2} \hat{z}\right)}{4 \pi \epsilon_{o}\left|\mathbf{r}-\frac{d}{2} \hat{z}\right|^{3}}+\frac{-Q\left(\mathbf{r}+\frac{d}{2} \hat{z}\right)}{4 \pi \epsilon_{o}\left|\mathbf{r}+\frac{d}{2} \hat{z}\right|^{3}} \\
& =\frac{Q}{4 \pi \epsilon_{o}}\left[\frac{\left(x, y, z-\frac{d}{2}\right)}{\left|\left(x, y, z-\frac{d}{2}\right)\right|^{3}}-\frac{\left(x, y, z+\frac{d}{2}\right)}{\left|\left(x, y, z+\frac{d}{2}\right)\right|^{3}}\right] \mathrm{V} / \mathrm{m} .
\end{aligned}
$$

Determine the electric flux $\int_{x y} \mathbf{E} \cdot d \mathbf{S}$ across the entire $x y$-plane using $d \mathbf{S}=$ $-\hat{z} d x d y$.

Solution: Because of linearity, the flux we want to calculate equals the sum of the flux due to charge Q at $\left(0,0, \frac{d}{2}\right)$ above $x y$-plane and the flux due to charge $-Q$ at ($0,0,-\frac{d}{2}$) above $x y$-plane.

Since by Gauss's law $\oint_{S} \mathbf{E} \cdot d \mathbf{S}=\frac{Q}{\epsilon_{o}}$ for any S surrounding Q, we can, by symmetry, infer that

$$
\int_{x y} \mathbf{E} \cdot(-\hat{z} d x d y)=\frac{Q}{2 \epsilon_{o}}
$$

when only charge Q is considered - the logic here is, half of flux $\oint_{S} \mathbf{E} \cdot d \mathbf{S}=\frac{Q}{\epsilon_{o}}$ emanating from charge Q should go up and the remaining half should go down crossing the $x y$-plane in downward direction. Likewise, since $\oint_{S} \mathbf{E} \cdot d \mathbf{S}=\frac{-Q}{\epsilon_{o}}$ for any S surrounding $-Q$, again by symmetry, we can infer

$$
\int_{x y} \mathbf{E} \cdot(-\hat{z} d x d y)=\frac{Q}{2 \epsilon_{o}}
$$

due to charge $-Q$ only - the logic in this case is, half of flux $\frac{Q}{\epsilon_{0}}$ "entering" charge $-Q$ is "coming from" above crossing the $x y$-plane in downward direction.

Thus, by superposition, we find total

$$
\int_{x y} \mathbf{E} \cdot(-\hat{z} d x d y)=\frac{Q}{2 \epsilon_{o}}+\frac{Q}{2 \epsilon_{o}}=\frac{Q}{\epsilon_{o}} .
$$

The above result can be confirmed directly by evaluating the integral

$$
\begin{aligned}
\int_{x y} \mathbf{E}(x, y, 0) \cdot(-\hat{z} d x d y) & =\int_{x y} \frac{Q}{4 \pi \epsilon_{o}}\left[\frac{\left(x, y,-\frac{d}{2}\right)}{\left|\left(x, y,-\frac{d}{2}\right)\right|^{3}}-\frac{\left(x, y, \frac{d}{2}\right)}{\left\lvert\,\left(x, y,\left.\frac{d}{2}\right|^{3}\right.\right.}\right] \cdot(-\hat{z} d x d y) \\
& =\frac{Q}{4 \pi \epsilon_{o}} \int_{x y} \frac{d}{\left|\left(x, y,-\frac{d}{2}\right)\right|^{3}} d x d y=\frac{Q d}{2 \epsilon_{o}} \int_{r=0}^{\infty} \frac{r}{\left(r^{2}+\left(\frac{d}{2}\right)^{2}\right)^{3 / 2}} d r \\
& =\frac{Q}{\epsilon_{o}}
\end{aligned}
$$

Just before the last step we have replaced $d x d y$ by $r d r d \phi$, where $r \equiv \sqrt{x^{2}+y^{2}}$, and carried out the ϕ integration before completing the r integration as a last step (which you should verify).

