4 Divergence and curl

Expressing the total charge Q_{V} contained in a volume V as a 3D volume integral of charge density $\rho(\mathbf{r})$, we can write Gauss's law examined during the last few lectures in the general form

$$
\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{V} \rho d V
$$

This equation asserts that the flux of displacement $\mathbf{D}=\epsilon_{o} \mathbf{E}$ over any closed surface S equals the net electrical charge contained in the enclosed volume V - only the charges included within V affect the flux of \mathbf{D} over surface S, with charges outside surface S making no net contribution to the surface integral $\oint_{S} \mathbf{D} \cdot d \mathbf{S}$.

- Gauss's law stated above holds true everywhere in space over all surfaces S and their enclosed volumes V, large and small.
- Application of Gauss's law to a small volume $\Delta V=\Delta x \Delta y \Delta z$ surrounded by a cubic surface ΔS of six faces, leads, in the limit of vanishing $\Delta x, \Delta y$, and Δz, to the differential form of Gauss's law expressed in terms of a divergence operation to be reviewed next:

- Given a sufficiently small volume $\Delta V=\Delta x \Delta y \Delta z$, we can assume that

$$
\int_{\Delta V} \rho d V \approx \rho \Delta x \Delta y \Delta z
$$

- Again under the same assumption
$\oint_{S} \mathbf{D} \cdot d \mathbf{S} \approx\left(D_{x \mid 2}-D_{x \mid 1}\right) \Delta y \Delta z+\left(D_{y \mid 4}-D_{y \mid 3}\right) \Delta x \Delta z+\left(D_{z \mid 6}-D_{z \mid 5}\right) \Delta x \Delta y$
with reference to displacement vector components like $D_{x \mid 2}$ shown on cubic surfaces depicted in the margin. Gauss's law demands the equality of the two expressions above, namely (after dividing both sides by $\Delta x \Delta y \Delta z)$

$$
\frac{D_{x \mid 2}-D_{x \mid 1}}{\Delta x}+\frac{D_{y \mid 4}-D_{y \mid 3}}{\Delta y}+\frac{D_{z \mid 6}-D_{z \mid 5}}{\Delta z} \approx \rho,
$$

in the limit of vanishing $\Delta x, \Delta y$, and Δz. In that limit, we obtain

$$
\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=\rho,
$$

which is known as differential form of Gauss's law.
A more compact way of writing this result is

$$
\nabla \cdot \mathbf{D}=\rho,
$$

where the operator

$$
\nabla \equiv\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right),
$$

known as del, is applied on the displacement vector

$$
\mathbf{D}=\left(D_{x}, D_{y}, D_{z}\right)
$$

following the usual dot product rules, except that the product of $\frac{\partial}{\partial x}$ and D_{x}, for instance, is treated as a partial derivative $\frac{\partial D_{x}}{\partial x}$. In the left side above

$$
\nabla \cdot \mathbf{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z} \quad(\text { divergence of } \mathbf{D})
$$

is known as divergence of \mathbf{D}.

Example 1: Find the divergence of $\mathbf{D}=\hat{x} 5 x+\hat{y} 12 \mathrm{C} / \mathrm{m}^{2}$
Solution: In this case

$$
D_{x}=5 x, \quad D_{y}=12, \quad \text { and } \quad D_{z}=0 .
$$

Therefore, divergence of \mathbf{D} is

$$
\begin{aligned}
\nabla \cdot \mathbf{D} & =\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z} \\
& =\frac{\partial}{\partial x}(5 x)+\frac{\partial}{\partial y}(12)+\frac{\partial}{\partial z}(0) \\
& =5+0+0=5 \frac{\mathrm{C}}{\mathrm{~m}^{3}} .
\end{aligned}
$$

Note that the divergence of vector \mathbf{D} is a scalar quantity which is the volumetric charge density in space as a consequence of Gauss's law (in differential form).

Example 2: Find the divergence $\nabla \cdot \mathbf{E}$ of electric field vector

$$
\mathbf{E}= \begin{cases}-\hat{x}_{1}\left(x+W_{1}\right) \\ \hat{\sigma}_{o} \frac{\rho_{0}\left(x-W_{2}\right)}{\epsilon_{o}}, & \text { for }-W_{1}<x<0 \\ 0, & \text { for } 0<x<W_{2} \\ 0, & \text { otherwise },\end{cases}
$$

from Example 4, last lecture (see margin figures).
Solution: In this case $E_{y}=E_{z}=0$, and therefore the divergence of \mathbf{E} is

$$
\nabla \cdot \mathbf{E}=\frac{\partial E_{x}}{\partial x}=\frac{\partial}{\partial x}\left\{\begin{array} { l l }
{ - \frac { \rho _ { 1 } (x + W _ { 1 }) } { \epsilon _ { o } } , } \\
{ \frac { \rho _ { 2 } (x W _ { 2 }) } { \epsilon _ { o } } , } \\
{ 0 , }
\end{array} \quad \left\{\begin{array}{ll}
-\frac{\rho_{1}}{\epsilon_{o}}, & \text { for }-W_{1}<x<0 \\
\frac{\rho_{2}}{\epsilon_{o}}, & \text { for } 0<x<W_{2} \\
0, & \text { otherwise },
\end{array},\right.\right.
$$

which provides us with $\rho(\mathbf{r}) / \epsilon_{o}$ of Example 4 from last lecture (in accordance with Gauss's law).

- Summarizing the results so far, Gauss's law can be expressed in integral as well as differential forms given by

$$
\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{V} \rho d V \quad \Leftrightarrow \quad \nabla \cdot \mathbf{D}=\rho
$$

- The equivalence of integral and differential forms implies that (after integrating the differential form of the equation on the right
over volume V on both sides)

$$
\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{V} \nabla \cdot \mathbf{D} d V
$$

which you may recall as the divergence theorem from MATH 241.

Divergence thm.

- Note that according to divergence theorem, we can interpret divergence as flux per unit volume.
- We can also think of divergence as a special type of a derivative applied to vector functions which produces non-zero scalar results (at each point in space) when the vector function has components which change in the direction they point.
- A second type of vector derivative known as curl which we review next complements the divergence in the sense that these two types of vector derivatives collectively contain maximal information about vector fields that they operate on:

Given their curl and divergences, vector fields can be uniquely reconstructed in regions V of 3D space provided they are known at the bounding surface S of region V, however large (even infinite) S and V may be - this is known as Helmholtz theorem (proof outlined in Lecture 7).

- The curl of a vector field $\mathbf{E}=\mathbf{E}(x, y, z)$ is defined, in terms of the del
operator ∇, like a cross product

$$
\begin{aligned}
\nabla \times \mathbf{E} & \equiv\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times\left(E_{x}, E_{y}, E_{z}\right)=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{x} & E_{y} & E_{z}
\end{array}\right| \quad \quad(\text { curl of } \mathbf{E}) \\
& =\hat{x}\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right)-\hat{y}\left(\frac{\partial E_{z}}{\partial x}-\frac{\partial E_{x}}{\partial z}\right)+\hat{z}\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right) .
\end{aligned}
$$

Example 3: Find the curl of the vector field

$$
\mathbf{E}=\hat{x} \cos y+\hat{y} 1
$$

Solution: The curl is

$$
\begin{aligned}
\nabla \times \mathbf{E} & =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\cos y & 1 & 0
\end{array}\right| \\
& =\hat{x}\left(\frac{\partial}{\partial y} 0-\frac{\partial}{\partial z} 1\right)-\hat{y}\left(\frac{\partial}{\partial x} 0-\frac{\partial}{\partial z} \cos y\right)+\hat{z}\left(\frac{\partial}{\partial x} 1-\frac{\partial}{\partial y} \cos y\right) \\
& =\hat{x} 0-\hat{y} 0+\hat{z}(0+\sin y)=\hat{z} \sin y
\end{aligned}
$$

which is another vector field.

The diagram in the margin depicts $\mathbf{E}=\hat{x} \cos y+\hat{y} 1$ as a vector map superposed upon a density plot of $|\nabla \times \mathbf{E}|=|\hat{z} \sin y|=|\sin y|$ indicating the strength of the curl vector $\nabla \times \mathbf{E}$ (light color corresponds large magnitude).

It is apparent that curl $\nabla \times \mathbf{E}$ is stronger in those regions where \mathbf{E} is rapidly varying in directions orthogonal to the direction of \mathbf{E} itself.

- As the above example demonstrates the curl of a vector field is in general another vector field.
- The only exception is if the curl is identically 0 at all positions $\mathbf{r}=(x, y, z)!$
- In that case, i.e., if $\nabla \times \mathbf{E}=0$, vector field \mathbf{E} is said to be curl-free.

IMPORTANT FACT: All static electric fields E, obtained from Coulomb's law, and satisfying Gauss's law $\nabla \cdot \mathbf{D}=\rho$ with static charge densities $\rho=\rho(\mathbf{r})$, are also found to be curl-free without exception.

- The proof of curl-free nature of static electric fields can be given by first showing that Coulomb field of a static charge is curl-free, and then making use of the superposition principle along with the fact that the curl of a sum must be the sum of curls - like differentiation, "taking curl" is a linear operation.
- You should try to show that $\nabla \times \mathbf{E}=0$ with the Coulomb field of a point charge Q located at the origin.
- The calculation is slightly more complicated than the following example (although similar in many ways) where we show that the static electric field of an infinite line charge is curl-free.

Example 4: Recall that the static field of a line charge λ distributed on the z-axis is

$$
\mathbf{E}(x, y, z)=\hat{r} \frac{\lambda}{2 \pi \epsilon_{o} r},
$$

where

$$
r^{2}=x^{2}+y^{2} \text { and } \hat{r}=\hat{x} \cos \phi+\hat{y} \sin \phi=\left(\frac{x}{r}, \frac{y}{r}, 0\right) .
$$

Show that field \mathbf{E} satisfies the condition $\nabla \times \mathbf{E}=0$.
Solution: Clearly, we can express vector \mathbf{E} as

$$
\mathbf{E}=\frac{\lambda}{2 \pi \epsilon_{o}}\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}, 0\right) .
$$

Since the components $\frac{x}{r^{2}}$ and $\frac{y}{r^{2}}$ of the vector are independent of z, the corresponding curl can be expanded as

$$
\nabla \times \mathbf{E}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{x} & E_{y} & E_{z}
\end{array}\right|=\frac{\lambda}{2 \pi \epsilon_{o}}\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{x}{r^{2}} & \frac{y}{r^{2}} & 0
\end{array}\right|=\frac{\lambda}{2 \pi \epsilon_{o}} \hat{z}\left(\frac{\partial}{\partial x} \frac{y}{r^{2}}-\frac{\partial}{\partial y} \frac{x}{r^{2}}\right) .
$$

But,

$$
\frac{\partial}{\partial x} \frac{y}{r^{2}}-\frac{\partial}{\partial y} \frac{x}{r^{2}}=y \frac{\partial}{\partial x} \frac{1}{r^{2}}-x \frac{\partial}{\partial y} \frac{1}{r^{2}}=y \frac{-2 x}{r^{4}}-x \frac{-2 y}{r^{4}}=0,
$$

so $\nabla \times \mathbf{E}=0$ as requested.

