5 Curl-free fields and electrostatic potential

e Mathematically, we can generate a curl-free vector field E(z,y, 2) as

oV oV 8‘/)
ox’ Oy’ 0z

B

by taking the gradient of any scalar function V(r) = V(x,y, z). The
gradient of V(z,y, z) is defined to be the vector

ov oV 8V)
ox’ Oy 0z

VV = (

pointing in the direction of increasing V'; in abbreviated notation, curl-

free fields E can be indicated as

E=-VV.

— Verification: Curl of vector VV is

V x (VV) = — 20— 0 — 20 = 0.

SEERE
%@4@ Nag

dr Oy
— It E = —VV represents an electrostatic field, then V is called
the electrostatic potential.

o Simple dimensional analysis indicates that units of electro-
static potential must be volts (V).
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— The prescription E = —V V| including the minus sign (optional,
but taken by convention in electrostatics), ensures that electro-
static field E points from regions of “high potential” to “low po-
tential” as illustrated in the next example. Electrostatic fields E

point from regions of
“high V' to “low V”

Example 1: Given an electrostatic potential

V(z,y,2)=a>—6yV

in a certain region of space, determine the corresponding electrostatic field E =
—VV in the same region.

Solution: The electrostatic field is

o 0 0

5 5y 52— 6) = (<22,6,0) = —# 20+ 46 V/m.

E = —V(2* - 6y) = —(

Note that this field is directed from regions of high potential to low potential. Also note

that electric field vectors are perpendicular everywhere to “equipotential” contours.

Given an electrostatic potential V(x, y, 2), finding the corresponding elec- Light colors indicate “high V»
trostatic field E(z,y, ) is a straightforward procedure (taking the negative dark colors “low 1
gradient) as already illustrated in Example 1.

The reverse operation of finding V' (z,y, z) from a given E(x,y, z) can be
accomplished by performing a vector line integral

p
/ E . dl
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in 3D space, since, as shown below, such integrals are “path independent” for

curl-free fields E = —VV.

e The vector line integral

p
/E-dl

over an integration path C' extending from a point o = (x,, ¥,, 2,) i
3D space to some other point p = (x,, y,, 2) is defined to be

— the limiting value of the sum of dot products E;-Al; computed over
all sub-elements of path C' having incremental lengths |Al;| and
unit vectors Al;/|Al;| directed from o towards p — the limiting
value is obtained as all |Al;| approach zero (i.e., with increasingly
finer subdivision of C' into |Al;| elements).

e Computation of the integral (see example below) involves the use of
infinitesimal displacement vectors

dl = zdx + ydy + 2dz = (dz, dy, dz)
and vector dot product
E-dl=(E,, E,E.)- (dx,dy,dz) = E,dx + E,dy + E.dz.

The integral
p P
/ E.-dl= / (Eydr + E,dy + E.dz)
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will in general be path dependent except for when E is curl-free.

Example 2: The field E = 2y & gz is curl-free with the + sign, but not with — as
verified below by computing V x E. Calculate the line integral of E (for both
signs, £) from point o = (0,0, 0) to point p = (1, 1,0) for two different paths C
going through points © = (0,1,0) and [ = (1,0, 0), respectively (see margin).

Solution: First we note that

v >
QPN

Vx(:ﬁyig)x): 9z By

3
9= (+1-1)
y +x 0

which confirms that E = 2y + gz is curl-free with with + sign, but not with —.
In either case, the integral to be performed is

p p p
/E-dl:/(Exd:rJrEydy—lrEzdz):/(yd:z:i:rdy).

For the first path C, going through u = (0, 1,0), we have
1

p 1
/ (yder £z dy) = / O(ix) dy|z—0 +/ Oydxy_l =0+1=1.
0 y= =

For the second path C; going through [ = (1,0,0), we have
1

P 1
/ (ydx:l:xdy):/ ydxy_O:I:/ rdyjp— =0+1 =21
0 =0 y=0

Clearly, the result shows that the line integral f f E - dl is path independent for
E = 2y + yx which is curl-free, and path dependent for E = 2y — g2 in which

case V x E #£ 0.

Curl-free: path-independent
line integrals
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e The mathematical reason why curl-free fields have path-independent
line integrals is because in those occasions the integrals can be written
in terms of exact differentials:

— for curl-free E = 2y + yx we have E - dl as an exact differential
ydz + xdy = d(zy) of the function xy, in which case [VE - dl =
zyll = (1-1—=0-0) =1 over all paths,

— for E = 2y — yx with V X E = =22 # 0, on the other hand,
E - dl = ydx — xdy does not form an exact differential —dV', and
thus there is no path-independent integral —V || nor an underlying
potential function V.

E-dl is guaranteed to be an exact differential if E = —VV = (—%—‘;, —%—‘y/, —%—‘2/

since in that case the differential of V' (z,y, 2), namely

v
dV = a—dx—i—a—vdy—i—a—vdz, i1s precisely —FE,dv—E,dy—F.dz = —E-dl.
ox oy 0z

— In that case

P o 0
/E-dl:—/E-dl:/deV!f;:Vo—Vp
0 p P

is independent of integration path; thus, if we we call o the “ground”,

and set V, = 0, then
V;):/ E - dl
p

denotes the potential drop from (any) point p to ground o.
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e The physical reason why this integral formula for potential V), works
with any integration path is the principle of energy conservation:

— integral prE - dl represents the work done by field E per unit
charge moved from p to o, so if the line integral were path-
dependent there would be ways of creating net energy by making
a charge ¢ follow special paths within the electrostatic field E,
in violation of the general principle of energy conservation (that
permits energy conversion but not creation or destruction).

Example 3: Given that V, = V(0,0,0) = 0 and
V
E=223+329+3(y+1)z—,
m

determine the electrostatic potential V, = V(X,Y, Z) at point p = (X,Y, Z) in
volts.

Solution: Assuming that the field is curl-free (it is), so that any integration path can
be used, we find that

o p P
V, = /E-dl:—/ E-dl:—/(2xdx—|—3zdy+3(y+1)dz)
p 0 0

X Y z
— —/ 2w dwyy .m0 — / 32 dYjp—x,—0 — / 3(y+1) d2p—x y—y
0 0 0

= —X?-0-3(V+1)Z

This implies
V(z,y,z) = —2*—3(y+ 1)z V.

As long as E is curl-free, line
integral is path-independent and
produces the voltage drop from
point p to "ground" o.

: V,=— [PE-dl
i
: y
Zi
0] ‘o' Y -
X i



Note that

—V(—x2 —3y+1)z) = V(x2 +3(y+1)z2)
= 22z + 93z + 23(y + 1)

yields the original field E, which is an indication that E is indeed curl-free.

Example 5: According to Coulomb’s law electrostatic field of a proton with charge
() = e (where —e is electronic charge) located at the origin is given as

e
E = 7
Ae, r?
where
r=+a2+1y2+22 and 7= (m,y,z).
r

Determine the electrostatic potential field V' established by charge ) = e with
the provision that V' — 0 as r — oo (i.e., ground at infinity).

Solution: Field E and its potential V' will exhibit spherical symmetry in this problem.
Therefore, with no loss of generality, we can calculate the line integral from a
point p at a distance r from the origin to a point o at oo (the specified ground)
along, say, the z-axis. Approaching the problem that way, the potential drop
from r to oo is

o0 e A )
Vir) = /Z:r —471_6022z - Zdz

€ | €
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e To convert electrostatic potential V), (in volts) at any point p to poten-
tial energy of a charge ¢ brought to the same point, it is sufficient to
multiply V,, with ¢ (or just the sign of ¢, depending on which energy
units we want to use — see the next example).

Example 6: In view of Example 5, what are the potential energies of a proton e and
an electron —e placed at distance r = a away from the proton at the origin,

where distance A 2 A
ol 0529 x 107 0m
ez me

a =

stands for Bohr radius — it is the mean distance of the ground state electron in
a hydrogen atom from the center of the atom. Recall that e = 1.602 x 107! C tet2=a
and €, ~ 1079/367 F/m.

Solution: Let’s first evaluate the potential V(r) at r = a:

V() e (1.6 x 10719367 x 10° 9 x 1.6
a) = ~ =
4reqa 47 x 0.53 x 1010 0.53

=27.2V.

e
For the proton, potential energy in Joules is calculated by multiplying V' (a) = 27.2 %:5
V with ¢ = e = 1.602 x 1071 C. However, by referring to 1.602 x 1071? J of
energy as 1 eV (electron-volt), it is more convenient to refer to potential energy
eV (a) of the proton at r = a as

eV (a) = 27.2¢V.

Likewise, for a particle with charge ¢ = —e, i.e., an electron, potential energy at the
same location is
—eV(a) = —27.2¢eV.




