5 Curl-free fields and electrostatic potential

- Mathematically, we can generate a curl-free vector field $\mathbf{E}(x, y, z)$ as

$$
\mathbf{E}=-\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}\right)
$$

by taking the gradient of any scalar function $V(\mathbf{r})=V(x, y, z)$. The gradient of $V(x, y, z)$ is defined to be the vector

$$
\nabla V \equiv\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}\right)
$$

pointing in the direction of increasing V; in abbreviated notation, curlfree fields \mathbf{E} can be indicated as

$$
\mathbf{E}=-\nabla V
$$

- Verification: Curl of vector ∇V is

$$
\nabla \times(\nabla V)=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial V}{\partial x} & \frac{\partial V}{\partial y} & \frac{\partial V}{\partial z}
\end{array}\right|=\hat{x} 0-\hat{y} 0-\hat{z} 0=0
$$

- If $\mathbf{E}=-\nabla V$ represents an electrostatic field, then V is called the electrostatic potential.
- Simple dimensional analysis indicates that units of electrostatic potential must be volts (V).
- The prescription $\mathbf{E}=-\nabla V$, including the minus sign (optional, but taken by convention in electrostatics), ensures that electrostatic field E points from regions of "high potential" to "low potential" as illustrated in the next example.

Example 1: Given an electrostatic potential

$$
V(x, y, z)=x^{2}-6 y \mathrm{~V}
$$

in a certain region of space, determine the corresponding electrostatic field $\mathbf{E}=$ $-\nabla V$ in the same region.

Solution: The electrostatic field is

$$
\mathbf{E}=-\nabla\left(x^{2}-6 y\right)=-\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)\left(x^{2}-6 y\right)=(-2 x, 6,0)=-\hat{x} 2 x+\hat{y} 6 \mathrm{~V} / \mathrm{m} .
$$

Note that this field is directed from regions of high potential to low potential. Also note that electric field vectors are perpendicular everywhere to "equipotential" contours.

Given an electrostatic potential $V(x, y, z)$, finding the corresponding electrostatic field $\mathbf{E}(x, y, z)$ is a straightforward procedure (taking the negative gradient) as already illustrated in Example 1.

The reverse operation of finding $V(x, y, z)$ from a given $\mathbf{E}(x, y, z)$ can be accomplished by performing a vector line integral

$$
\int_{o}^{p} \mathbf{E} \cdot d \mathbf{l}
$$

in 3D space, since, as shown below, such integrals are "path independent" for curl-free fields $\mathbf{E}=-\nabla V$.

- The vector line integral

$$
\int_{o}^{p} \mathbf{E} \cdot d \mathbf{l}
$$

over an integration path C extending from a point $o=\left(x_{o}, y_{o}, z_{o}\right)$ in 3D space to some other point $p=\left(x_{p}, y_{p}, z_{p}\right)$ is defined to be

- the limiting value of the sum of dot products $\mathbf{E}_{j} \cdot \Delta \mathbf{l}_{j}$ computed over all sub-elements of path C having incremental lengths $\left|\Delta \mathbf{l}_{j}\right|$ and unit vectors $\Delta \mathbf{l}_{j} /\left|\Delta \mathbf{l}_{j}\right|$ directed from o towards p - the limiting value is obtained as all $\left|\Delta \mathbf{l}_{j}\right|$ approach zero (i.e., with increasingly finer subdivision of C into $\left|\Delta \mathbf{l}_{j}\right|$ elements).
- Computation of the integral (see example below) involves the use of infinitesimal displacement vectors

$$
d \mathbf{l}=\hat{x} d x+\hat{y} d y+\hat{z} d z=(d x, d y, d z)
$$

and vector dot product

$$
\mathbf{E} \cdot d \mathbf{l}=\left(E_{x}, E_{y}, E_{z}\right) \cdot(d x, d y, d z)=E_{x} d x+E_{y} d y+E_{z} d z
$$

The integral

$$
\int_{o}^{p} \mathbf{E} \cdot d \mathbf{l}=\int_{o}^{p}\left(E_{x} d x+E_{y} d y+E_{z} d z\right)
$$

will in general be path dependent except for when \mathbf{E} is curl-free.

Example 2: The field $\mathbf{E}=\hat{x} y \pm \hat{y} x$ is curl-free with the + sign, but not with - as verified below by computing $\nabla \times \mathbf{E}$. Calculate the line integral of \mathbf{E} (for both signs, \pm) from point $o=(0,0,0)$ to point $p=(1,1,0)$ for two different paths C going through points $u=(0,1,0)$ and $l=(1,0,0)$, respectively (see margin).

Solution: First we note that

$$
\nabla \times(\hat{x} y \pm \hat{y} x)=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & \pm x & 0
\end{array}\right|=\hat{z}(\pm 1-1)
$$

which confirms that $\mathbf{E}=\hat{x} y \pm \hat{y} x$ is curl-free with with + sign, but not with - . In either case, the integral to be performed is

$$
\int_{o}^{p} \mathbf{E} \cdot d \mathbf{l}=\int_{o}^{p}\left(E_{x} d x+E_{y} d y+E_{z} d z\right)=\int_{o}^{p}(y d x \pm x d y) .
$$

For the first path C_{u} going through $u=(0,1,0)$, we have

$$
\int_{o}^{p}(y d x \pm x d y)=\int_{y=0}^{1}(\pm x) d y_{\mid x=0}+\int_{x=0}^{1} y d x_{\mid y=1}=0+1=1
$$

For the second path C_{l} going through $l=(1,0,0)$, we have

$$
\int_{o}^{p}(y d x \pm x d y)=\int_{x=0}^{1} y d x_{\mid y=0} \pm \int_{y=0}^{1} x d y_{\mid x=1}=0 \pm 1= \pm 1 .
$$

Clearly, the result shows that the line integral $\int_{o}^{p} \mathbf{E} \cdot d \mathbf{l}$ is path independent for $\mathbf{E}=\hat{x} y+\hat{y} x$ which is curl-free, and path dependent for $\mathbf{E}=\hat{x} y-\hat{y} x$ in which case $\nabla \times \mathbf{E} \neq 0$.

Curl-free: path-independent line integrals

"Curly": path-dependent line integrals

- The mathematical reason why curl-free fields have path-independent line integrals is because in those occasions the integrals can be written in terms of exact differentials:
- for curl-free $\mathbf{E}=\hat{x} y+\hat{y} x$ we have $\mathbf{E} \cdot d \mathbf{l}$ as an exact differential $y d x+x d y=d(x y)$ of the function $x y$, in which case $\int_{o}^{p} \mathbf{E} \cdot d \mathbf{l}=$ $\left.x y\right|_{o} ^{p}=(1 \cdot 1-0 \cdot 0)=1$ over all paths.
- for $\mathbf{E}=\hat{x} y-\hat{y} x$ with $\nabla \times \mathbf{E}=-2 \hat{z} \neq 0$, on the other hand, $\mathbf{E} \cdot d \mathbf{l}=y d x-x d y$ does not form an exact differential $-d V$, and thus there is no path-independent integral $-\left.V\right|_{o} ^{p}$, nor an underlying potential function V.
$\mathbf{E} \cdot d \mathbf{l}$ is guaranteed to be an exact differential if $\mathbf{E}=-\nabla V=\left(-\frac{\partial V}{\partial x},-\frac{\partial V}{\partial y},-\frac{\partial V}{\partial z}\right)$, ${ }^{z}$ since in that case the differential of $V(x, y, z)$, namely
$d V \equiv \frac{\partial V}{\partial x} d x+\frac{\partial V}{\partial y} d y+\frac{\partial V}{\partial z} d z, \quad$ is precisely $-E_{x} d x-E_{y} d y-E_{z} d z=-\mathbf{E} \cdot d \mathbf{l}$.
- In that case

$$
\int_{o}^{p} \mathbf{E} \cdot d \mathbf{l}=-\int_{p}^{o} \mathbf{E} \cdot d \mathbf{l}=\int_{p}^{o} d V=\left.V\right|_{p} ^{o}=V_{o}-V_{p}
$$

is independent of integration path; thus, if we we call o the "ground", and set $V_{o}=0$, then

$$
V_{p}=\int_{p}^{o} \mathbf{E} \cdot d \mathbf{l}
$$

denotes the potential drop from (any) point p to ground o.

- The physical reason why this integral formula for potential V_{p} works with any integration path is the principle of energy conservation:
- integral $\int_{p}^{o} \mathbf{E} \cdot d \mathbf{l}$ represents the work done by field \mathbf{E} per unit charge moved from p to o, so if the line integral were pathdependent there would be ways of creating net energy by making a charge q follow special paths within the electrostatic field \mathbf{E}, in violation of the general principle of energy conservation (that permits energy conversion but not creation or destruction).

Example 3: Given that $V_{o}=V(0,0,0)=0$ and

$$
\mathbf{E}=2 x \hat{x}+3 z \hat{y}+3(y+1) \hat{z} \frac{\mathrm{~V}}{\mathrm{~m}},
$$

determine the electrostatic potential $V_{p}=V(X, Y, Z)$ at point $p=(X, Y, Z)$ in volts.

Solution: Assuming that the field is curl-free (it is), so that any integration path can

As long as E is curl-free, line integral is path-independent and produces the voltage drop from point p to "ground" o.

This implies

$$
V(x, y, x)=-x^{2}-3(y+1) z \mathrm{~V} .
$$

Note that

$$
\begin{aligned}
-\nabla\left(-x^{2}-3(y+1) z\right) & =\nabla\left(x^{2}+3(y+1) z\right) \\
& =\hat{x} 2 x+\hat{y} 3 z+\hat{z} 3(y+1)
\end{aligned}
$$

yields the original field \mathbf{E}, which is an indication that \mathbf{E} is indeed curl-free.

Example 5: According to Coulomb's law electrostatic field of a proton with charge $Q=e$ (where $-e$ is electronic charge) located at the origin is given as

$$
\mathbf{E}=\frac{e}{4 \pi \epsilon_{o} r^{2}} \hat{r},
$$

where

$$
r=\sqrt{x^{2}+y^{2}+z^{2}} \text { and } \hat{r}=\frac{(x, y, z)}{r}
$$

Determine the electrostatic potential field V established by charge $Q=e$ with the provision that $V \rightarrow 0$ as $r \rightarrow \infty$ (i.e., ground at infinity).

Solution: Field \mathbf{E} and its potential V will exhibit spherical symmetry in this problem. Therefore, with no loss of generality, we can calculate the line integral from a point p at a distance r from the origin to a point o at ∞ (the specified ground) along, say, the z-axis. Approaching the problem that way, the potential drop
 from r to ∞ is

$$
\begin{aligned}
V(r) & =\int_{z=r}^{\infty} \frac{e}{4 \pi \epsilon_{o} z^{2}} \hat{z} \cdot \hat{z} d z \\
& =-\left.\frac{e}{4 \pi \epsilon_{o} z}\right|_{r} ^{\infty}=\frac{e}{4 \pi \epsilon_{o} r} .
\end{aligned}
$$

- To convert electrostatic potential V_{p} (in volts) at any point p to potential energy of a charge q brought to the same point, it is sufficient to multiply V_{p} with q (or just the sign of q, depending on which energy units we want to use - see the next example).

Example 6: In view of Example 5, what are the potential energies of a proton e and an electron -e placed at distance $r=a$ away from the proton at the origin, where distance

$$
a \equiv \frac{4 \pi \epsilon_{o}}{e^{2}} \frac{\hbar^{2}}{m_{e}}=0.529 \times 10^{-10} \mathrm{~m}
$$

stands for Bohr radius - it is the mean distance of the ground state electron in a hydrogen atom from the center of the atom. Recall that $e=1.602 \times 10^{-19} \mathrm{C}$ and $\epsilon_{o} \approx 10^{-9} / 36 \pi \mathrm{~F} / \mathrm{m}$.

Solution: Let's first evaluate the potential $V(r)$ at $r=a$:

$$
V(a)=\frac{e}{4 \pi \epsilon_{o} a} \approx \frac{\left(1.6 \times 10^{-19}\right) 36 \pi \times 10^{9}}{4 \pi \times 0.53 \times 10^{-10}}=\frac{9 \times 1.6}{0.53}=27.2 \mathrm{~V} .
$$

For the proton, potential energy in Joules is calculated by multiplying $V(a)=27.2$ V with $q=e=1.602 \times 10^{-19} \mathrm{C}$. However, by referring to $1.602 \times 10^{-19} \mathrm{~J}$ of
 energy as 1 eV (electron-volt), it is more convenient to refer to potential energy $e V(a)$ of the proton at $r=a$ as

$$
e V(a)=27.2 \mathrm{eV}
$$

Likewise, for a particle with charge $q=-e$, i.e., an electron, potential energy at the same location is

$$
-e V(a)=-27.2 \mathrm{eV}
$$

