
5 Curl-free fields and electrostatic potential
• Mathematically, we can generate a curl-free vector field E(x, y, z) as

E = −(
∂V

∂x
,
∂V

∂y
,
∂V

∂z
),

by taking the gradient of any scalar function V (r) = V (x, y, z). The
gradient of V (x, y, z) is defined to be the vector

∇V ≡ (
∂V

∂x
,
∂V

∂y
,
∂V

∂z
),

pointing in the direction of increasing V ; in abbreviated notation, curl-
free fields E can be indicated as

E = −∇V.

– Verification: Curl of vector ∇V is

∇× (∇V ) =

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∣∣∣∣∣∣∣
= x̂0 − ŷ0 − ẑ0 = 0.

– If E = −∇V represents an electrostatic field, then V is called
the electrostatic potential.

◦ Simple dimensional analysis indicates that units of electro-
static potential must be volts (V).
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– The prescription E = −∇V , including the minus sign (optional,
but taken by convention in electrostatics), ensures that electro-
static field E points from regions of “high potential” to “low po-
tential” as illustrated in the next example. Electrostatic fields E

point from regions of
“high V ” to “low V ”

Example 1: Given an electrostatic potential

V (x, y, z) = x2 − 6y V

in a certain region of space, determine the corresponding electrostatic field E =
−∇V in the same region.

Solution: The electrostatic field is

E = −∇(x2 − 6y) = −(
∂

∂x
,

∂

∂y
,

∂

∂z
)(x2 − 6y) = (−2x, 6, 0) = −x̂ 2x + ŷ6 V/m.

Note that this field is directed from regions of high potential to low potential. Also note
that electric field vectors are perpendicular everywhere to “equipotential” contours.
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Light colors indicate “high V ”

dark colors “low V ”

Given an electrostatic potential V (x, y, z), finding the corresponding elec-
trostatic field E(x, y, z) is a straightforward procedure (taking the negative
gradient) as already illustrated in Example 1.

The reverse operation of finding V (x, y, z) from a given E(x, y, z) can be
accomplished by performing a vector line integral

∫ p

o
E · dl
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in 3D space, since, as shown below, such integrals are “path independent” for
curl-free fields E = −∇V .

• The vector line integral
∫ p

o
E · dl

over an integration path C extending from a point o = (xo, yo, zo) in
3D space to some other point p = (xp, yp, zp) is defined to be x

y

z

o = (xo, yo, zo)

p = (xp, yp, zp)
Ej

∆ljC

C ′

– the limiting value of the sum of dot products Ej·∆lj computed over
all sub-elements of path C having incremental lengths |∆lj| and
unit vectors ∆lj/|∆lj| directed from o towards p — the limiting
value is obtained as all |∆lj| approach zero (i.e., with increasingly
finer subdivision of C into |∆lj| elements).

• Computation of the integral (see example below) involves the use of
infinitesimal displacement vectors

dl = x̂dx + ŷdy + ẑdz = (dx, dy, dz)

and vector dot product

E · dl = (Ex, Ey, Ez) · (dx, dy, dz) = Exdx + Eydy + Ezdz.

The integral
∫ p

o
E · dl =

∫ p

o
(Exdx + Eydy + Ezdz)
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will in general be path dependent except for when E is curl-free. Curl-free: path-independent
line integrals
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“Curly”: path-dependent line
integrals
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Example 2: The field E = x̂y ± ŷx is curl-free with the + sign, but not with − as
verified below by computing ∇ × E. Calculate the line integral of E (for both
signs, ±) from point o = (0, 0, 0) to point p = (1, 1, 0) for two different paths C
going through points u = (0, 1, 0) and l = (1, 0, 0), respectively (see margin).

Solution: First we note that

∇× (x̂y ± ŷx) =

∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

y ±x 0

∣∣∣∣∣∣
= ẑ(±1 − 1)

which confirms that E = x̂y ± ŷx is curl-free with with + sign, but not with −.
In either case, the integral to be performed is

∫ p

o
E · dl =

∫ p

o
(Exdx + Eydy + Ezdz) =

∫ p

o
(y dx ± x dy).

For the first path Cu going through u = (0, 1, 0), we have
∫ p

o
(y dx ± x dy) =

∫ 1

y=0
(±x) dy|x=0 +

∫ 1

x=0
y dx|y=1 = 0 + 1 = 1.

For the second path Cl going through l = (1, 0, 0), we have
∫ p

o
(y dx ± x dy) =

∫ 1

x=0
y dx|y=0 ±

∫ 1

y=0
x dy|x=1 = 0 ± 1 = ±1.

Clearly, the result shows that the line integral
∫ p

o E · dl is path independent for
E = x̂y + ŷx which is curl-free, and path dependent for E = x̂y − ŷx in which
case ∇× E '= 0.
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• The mathematical reason why curl-free fields have path-independent
line integrals is because in those occasions the integrals can be written
in terms of exact differentials:

– for curl-free E = x̂y + ŷx we have E · dl as an exact differential
ydx + xdy = d(xy) of the function xy, in which case

∫ p
o E · dl =

xy|po = (1 · 1 − 0 · 0) = 1 over all paths.
– for E = x̂y − ŷx with ∇ × E = −2ẑ '= 0, on the other hand,

E · dl = ydx − xdy does not form an exact differential −dV , and
thus there is no path-independent integral−V |po, nor an underlying
potential function V .

E·dl is guaranteed to be an exact differential if E = −∇V = (−∂V
∂x ,−∂V

∂y ,−∂V
∂z ),

since in that case the differential of V (x, y, z), namely

dV ≡ ∂V

∂x
dx+

∂V

∂y
dy+

∂V

∂z
dz, is precisely −Exdx−Eydy−Ezdz = −E·dl.

– In that case x

y

z

Vo = 0

Vp =
∫ o
p E · dl

E(r)

dl

∫ p

o
E · dl = −

∫ o

p
E · dl =

∫ o

p
dV = V |op = Vo − Vp

is independent of integration path; thus, if we we call o the “ground”,
and set Vo = 0, then

Vp =

∫ o

p
E · dl

denotes the potential drop from (any) point p to ground o.
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• The physical reason why this integral formula for potential Vp works
with any integration path is the principle of energy conservation:

x

y

z Vp =
∫ o
p E · dl

dl

Vo = 0

As long as E is curl-free, line
integral is path-independent and
produces the voltage drop from 
point p to "ground" o.

E(r)

x

y

z
Vp = −

∫ p
o E · dl

o
X

Y

Z

– integral
∫ o

p E · dl represents the work done by field E per unit
charge moved from p to o, so if the line integral were path-
dependent there would be ways of creating net energy by making
a charge q follow special paths within the electrostatic field E,
in violation of the general principle of energy conservation (that
permits energy conversion but not creation or destruction).

Example 3: Given that Vo = V (0, 0, 0) = 0 and

E = 2xx̂ + 3zŷ + 3(y + 1)ẑ
V
m

,

determine the electrostatic potential Vp = V (X, Y, Z) at point p = (X, Y, Z) in
volts.

Solution: Assuming that the field is curl-free (it is), so that any integration path can
be used, we find that

Vp =

∫ o

p
E · dl = −

∫ p

o
E · dl = −

∫ p

o
(2x dx + 3z dy + 3(y + 1) dz)

= −
∫ X

0
2x dx|y,z=0 −

∫ Y

0
3z dy|x=X,z=0 −

∫ Z

0
3(y + 1) dz|x=X,y=Y

= −X2 − 0 − 3(Y + 1)Z.

This implies
V (x, y, x) = −x2 − 3(y + 1)z V.
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Note that

−∇(−x2 − 3(y + 1)z) = ∇(x2 + 3(y + 1)z)

= x̂2x + ŷ3z + ẑ3(y + 1)

yields the original field E, which is an indication that E is indeed curl-free.

e
x
y

z

z = r

Example 5: According to Coulomb’s law electrostatic field of a proton with charge
Q = e (where −e is electronic charge) located at the origin is given as

E =
e

4πεor2 r̂,

where
r =

√
x2 + y2 + z2 and r̂ =

(x, y, z)

r
.

Determine the electrostatic potential field V established by charge Q = e with
the provision that V → 0 as r → ∞ (i.e., ground at infinity).

Solution: Field E and its potential V will exhibit spherical symmetry in this problem.
Therefore, with no loss of generality, we can calculate the line integral from a
point p at a distance r from the origin to a point o at ∞ (the specified ground)
along, say, the z-axis. Approaching the problem that way, the potential drop
from r to ∞ is

V (r) =

∫ ∞

z=r

e

4πεoz2 ẑ · ẑdz

= − e

4πεoz
|∞r =

e

4πεor
.
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• To convert electrostatic potential Vp (in volts) at any point p to poten-
tial energy of a charge q brought to the same point, it is sufficient to
multiply Vp with q (or just the sign of q, depending on which energy
units we want to use — see the next example).

e
x
y

z

z = a±e

Example 6: In view of Example 5, what are the potential energies of a proton e and
an electron −e placed at distance r = a away from the proton at the origin,
where distance

a ≡ 4πεo

e2
!2

me
= 0.529× 10−10 m

stands for Bohr radius — it is the mean distance of the ground state electron in
a hydrogen atom from the center of the atom. Recall that e = 1.602 × 10−19 C
and εo ≈ 10−9/36π F/m.

Solution: Let’s first evaluate the potential V (r) at r = a:

V (a) =
e

4πεoa
≈ (1.6 × 10−19)36π × 109

4π × 0.53 × 10−10 =
9 × 1.6

0.53
= 27.2 V.

For the proton, potential energy in Joules is calculated by multiplying V (a) = 27.2
V with q = e = 1.602 × 10−19 C. However, by referring to 1.602 × 10−19 J of
energy as 1 eV (electron-volt), it is more convenient to refer to potential energy
eV (a) of the proton at r = a as

eV (a) = 27.2 eV.

Likewise, for a particle with charge q = −e, i.e., an electron, potential energy at the
same location is

−eV (a) = −27.2 eV.
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