
6 Circulation and boundary conditions
Since curl-free static electric fields have path-independent line integrals, it
follows that over closed paths C (when points p and o coincide)

∮

C
E · dl = 0,

where the
∮
C E · dl is called the circulation of field E over closed path C

bounding a surface S (see margin).
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C enclosing surface S. 

Note that the area increment 
dS of surface S is taken by 
convention to point in the 
right-hand-rule direction 
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direction C. 
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Example 1: Consider the static electric field variation

E(x, y, z) = x̂
ρx

εo

that will be encountered within a uniformly charged slab of an infinite extent in
y and z directions and a finite width in x direction centered about x = 0. Show
that this field E satisfies the condition

∮
C E · dl = 0 for a rectangular closed

path C with vertices at (x, y, z) = (−3, 0, 0), (3, 0, 0), (3, 4, 0), and (−3, 4, 0)
traversed in the order of the vertices given.

Solution: Integration path C is shown in the figure in the margin. With the help of
the figure we expand the circulation

∮
C E · dl as

E =

∫ 3

x=−3
x̂
ρx

εo
· x̂dx+

∫ 4

y=0
x̂
ρ3

εo
· ŷdy +

∫ −3

x=3
x̂
ρx

εo
· x̂dx+

∫ 0

y=4
x̂
ρ(−3)

εo
· ŷdy

=

∫ 3

x=−3

ρx

εo
dx+ 0 +

∫ −3

x=3

ρx

εo
dx+ 0 = 0.
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Note that in expanding
∮
C E · dl above for the given path C, we took dl as x̂dx

and ŷdy in turns (along horizontal and vertical edges of C, respectively) and
ordered the integration limits in x and y to traverse C in a counter-clockwise
direction as indicated in the diagram.

• Vector fields E having zero circulations over all closed paths C are
known as conservative fields (for obvious reasons having to do with
their use in modeling static fields compatible with conservation theo-
rems).

– The concepts of curl-free and conservative fields overlap, that is
∮

C
E · dl = 0 ⇔ ∇×E = 0

over all closed paths C and at each r.
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STOKE’S THM:
Circulation of E around close 
path C equals the flux over
enclosed surface S of the curl 
of E taken in direction of dS.  

dS points in right-hand-rule 
direction with respect to 
"circulation" direction C. 

• The above relationship between circulation and curl is also a conse-
quence of Stoke’s theorem (discussed in MATH 241) which asserts
that Stoke’s thm.∮

C
E · dl =

∫

S
∇× E · dS,

where

– the integration surface S on the right is bounded by the closed
integration contour C of the left side, and
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– the incremental area element dS on the right points across area S
in the direction indicated by a right-hand rule as follows:

Point your right thumb in chosen circulation direction C; then your
right fingers point through surface S in the direction that should be
adopted for dS.

– Given Stoke’s theorem,
∮
C E · dl = 0 follows immediately for all

C, if ∇×E = 0 is true over all r.
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path C equals the flux over
enclosed surface S of the curl 
of E taken in direction of dS.  

dS points in right-hand-rule 
direction with respect to 
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Verification of Stoke’s thm: Stoke’s theorem applies to all contours
C of all sizes and orientations and their enclosed surfaces S of any
shape. For a small rectangular contour on a constant x plane with
sufficiently small ∆y and ∆z dimensions parallel to y and z axes (see
figure in the margin), we have

∮

C
E · dl ≈ (Ez|2 − Ez|1)∆z − (Ey|4 − Ey|3)∆y,

an approximation that can also be re-arranged as
∮

C
E · dl ≈ (

Ez|2 − Ez|1

∆y
−

Ey|4 − Ey|3

∆z
)x̂ ·∆y∆z x̂.

Right hand side above is clearly an approximation also for

(∇× E) · dS = (∇× E)· dydz x̂ = (
∂Ez

∂y
− ∂Ey

∂z
)x̂ · dydzx̂.
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Matching the approximations and taking the limit of vanishing ∆y and
∆z, we realize that for any infinitesimal area element dS of an arbitrary
direction,

∇×E · dS =

∮

dC
E · dl

where dC denotes the bounding infinitesimal contour of dS traversed
in the right-hand rule direction. Stokes theorem for an arbitrary C over
a finite enclosed area S is obtained by superposing these infinitesimals
— the left side then becomes

∫
S ∇×E · dS and the right side

∮
C E · dl

after cancellations of opposing line integral contributions coming from
overlapping adjacent segments (see figure in the margin).

E

dl

C

S

Sum of circulations over small
squares cancel in the interior
edges and only survive around the
exterior path C.  This way, 
circulation around C matches
the sum of the fluxes of curl E
calculated over the small squares. 

Laws of
electrostatics:

∇×E = 0

∇ · εoE = ρ

They also apply “quasi-statically”
over a region of dimension L
when a time-varying field source
ρ(r, t) has a time-constant τ much
longer than the propagation time
delay L/c of E(r, t) field varia-
tions across the region (c is the
speed of light).

In electro-quasistatics (EQS)
E(r, t) will be accompanied by
a slowly varying magnetic field
B(r, t) (to be studied starting in
Lecture 12).

– Stoke’s theorem clearly implies that curl is circulation per unit
area, just as the divergence theorem showed that divergence is
flux per unit volume. The only difference is, curl also has a
direction, which is the normal unit of the plane that contains the
maximal value of circulation per unit area found at that location
over all possible orientations of dS.

We can now summarize the general constraints governing static electric fields
as

∇×E(r) = 0, ∇ ·D(r) = ρ(r), where D(r) = εoE(r).

• Vector fields E(r) and D(r) governed by these equations will in general
be continuous functions of position coordinates r = (x, y, z) except at
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boundary surfaces where charge density function ρ(r) requires a repre-
sentation in terms of a surface charge density ρs(r).

– For instance, according to our earlier results, static electric field
of a charge density (see sketch at the margin)

ρ(r) = ρsδ(z)

would be

E(r) = ẑ
ρs
2εo

sgn(z) ⇒ D(r) = ẑ
ρs
2

sgn(z).

◦ Consider a superposition of these fields with fields Eo(r) and
Do(r) = εoEo(r) produced by arbitrary continuous sources,
namely (macroscopic) fields !2 !1 0 1 2

!2

!1

0

1

2

x

z

E(r) = ẑ
ρs
2εo

sgn(z)+Eo(r) and D(r) = ẑ
ρs
2

sgn(z)+εoEo(r).

Since fields Eo(r) and Do(r) vary continuously, these field expressions
must satisfy

ẑ · (D+ −D−) = ρs and ẑ × (E+ −E−) = 0

where
E+ ≡ E(x, y, 0+) and E− ≡ E(x, y, 0−)

refer to limiting values of E at z = 0 plane from above and below,
respectively, and likewise for ẑ

D+

D−
z = 0

D+ ≡ D(x, y, 0+) and D− ≡ D(x, y, 0−).
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• The above “boundary condition equations” can be written in a more
general form (see margin for justification) as

n̂
D+

D−
w

Constraint
∮

C

E · dl = 0

around the dotted path yields

E+
t = E−

t

in w → 0 limit.

Gauss’s law
∮

S

D · dS = QV

applied over the dotted volume (seen in
profile) yields

D+
n −D−

n = ρs

in w → 0 limit.

n̂ · (D+ −D−) = ρs and n̂× (E+ −E−) = 0

where n̂ denotes a unit vector normal to any surface of an arbitrary
orientation carrying a surface charge density ρs, while field vectors with
superscripts + and − indicate limiting values of fields measured on
either side of the charged surface (with n̂ pointing from − to +).

– The equations can be further simplified as

D+
n −D−

n = ρs and E+
t = E−

t

where Dn and Et refer to normal component of D and tangential
component of E, respectively. Clearly, these boundary condi-
tions say that at any surface S,

◦ tangential component of electric field E needs to be continu-
ous, but

◦ normal component of D can change by an amount equal to
the charge density ρs carried by the surface.

6



z

x

y

ρs = 2C/m2

x = 5 m

D = 0 for x < 0.

ρso = ?

Example 2:

Measurements indicate that D = 0 in the region x < 0.

Also, x = 0 and x = 5 m planes contain surface charge densities of ρs = 2 C/m2 and
ρso, respectively.

Determine ρso and D for −∞ < x < ∞ if there are no other charge distributions.

Solution:

Since the normal component of D must increase by ρs = 2 C/m2 when we cross the
charged surface x = 0, we must have D = x̂2 C/m2 in the region 0 < x < 5 m.

Having D = 0 in the region x < 0 requires that the field due to surface charge ρso
on x = 5 m plane must cancel the field due ρs = 2 C/m2 on x = 0 plane — this
requires that ρso be −2 C/m2.

In that case D = 0 in the region x > 5 m, because D must increase by ρso = −2

C/m2 when we cross the charged surface at x = 5 m.
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y

ρs = 2C/m2

x = 5 m

D = 3ŷ for x < 0.

ρs = −6C/m2

Example 3: In the region x < 0 measurements indicate a constant displacement field
D = 3ŷ C/m2. Also, x = 0 and x = 5 m planes contain surface charge densities
of ρs = 2 C/m2 and ρs = −6 C/m2 respectively. Determine D for x > 0 if D is
known to be uniform in the intervals 0 < x < 5 m and x > 5 m.

Solution: First we note that E = D
εo

= ŷ 3
εo

V/m is tangential to x = 0 and x = 5 m
surfaces. Since the tangential component of E cannot change at any boundary,
we will have a uniform Ey = 3

εo
in all regions, −∞ < x < ∞, implying that

Dy = 3 C/m2 throughout (caused by charges at |y| → ∞).

Second, we note that normal component of D with respect to x = 0 and x = 5 m
surfaces, namely Dx, is zero in z < 0. Since the normal component of D must
increase by an amount ρs when we cross a charged surface, we must have Dx = 2
C/m2 in the region 0 < x < 5 m, and Dx = 2 + (−6) = −4 C/m2 in x > 5 m.

In summary,

D =






ŷ3, for x < 0,

x̂2 + ŷ3, for 0 < x < 5 m C
m2 .

−x̂4 + ŷ3, for x > 5 m
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