
8 Conductors, dielectrics, and polarization
So far in this course we have examined static field configurations of charge
distributions assumed to be fixed in free space in the absence of nearby
materials (solid, liquid, or gas) composed of neutral atoms and molecules.

In the presence of material bodies composed of large number of charge-
neutral atoms (in fluid or solid states) static charge distributions giving rise
to electrostatic fields can be typically1 found:
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A conducting slab inserted into a
region with field E_o (as shown 
in b)develops surface charge which 
cancels out E_o within the slab.  

E_o relates to surface charge 
as dictated by Gauss’s law and 
superposition principle. 

1. On exterior surfaces of conductors in “steady-state”,

2. In crystal lattices occupied by ionized atoms, as in depletion regions of
semiconductor junctions in diodes and transistors.

In this lecture we will examine these configurations and response of materials
to applied electric fields.

Conductivity and static charges on conductor surfaces:

• Conductivity σ is an emergent property of materials bodies con-
taining free charge carriers (e.g., unbound electrons, ionized atoms or
molecules) which relates the applied electric field E (V/m) to the elec-
trical current density J (A/m2) conducted in the material via a linear

1More generally, materials containing charge carriers exhibiting divergence free flows will also exhibit
static charge distributions.
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relation2

J = σE. (Ohm’s Law)

• Simple physics-based models for σ will be discussed later in Lecture 11.
For now it is sufficient to note that:

– σ → ∞ corresponds to a perfect electrical conductor 3 (PEC) for
which it is necessary that E = 0 (in analogy with V = 0 across a
short circuit element) independent of J.

– σ → 0 corresponds to a perfect insulator for which it is necessary
that J = 0 (in analogy with I = 0 through an open circuit element)
independent of E.

• While (macroscopic) E = 0 in PEC’s unconditionally, a conductor with
a finite σ (e.g., copper or sea water) will also have E = 0 in “steady-
state” after the decay of transient currents J that may be initiated
within the conductor after applying an external electric field Eo (see
margin).
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– The reason is, mobile free charges (e.g., electrons in metallic con-
ductors) within the conductor will be pulled or pushed by the
applied field Eo to pile up on exterior surfaces of the conductor

2Linear behavior is possible provided charge carriers suffer occasional collisions within the medium.
3PEC is an “idealization” that has no real counterpart, even though it is convenient to treat high

conductivity materials such as copper as PEC in certain approximate models and calculations. For “su-
perconducting materials” σ → ∞ only in the low frequency limit.
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until a surface charge density ρs that is generated produces a sec-
ondary field −Eo that exactly cancels out the applied Eo within
the interior of the conductor.

– E = 0 in the interior at steady-state implies that potential V =const.,
as well as ρ = ∇ ·D = ∇ · εoE = 0.

– Surface charge density ρs and the exterior field on a conductor
surface will satisfy the boundary condition equations

n̂ · D = ρs and n̂ × E = 0,

with n̂ denoting the outward unit normal.
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ρs

εo

+  +  +  +  +  +  +  +  +  +

-  -  -  -  -  -  -  -  -  -(b)
Eo

Eo

−ρs

ρs

−ρs

ρs

−ρs

ρs

-  -  -  -  -  -  -  -  -  -

+  +  +  +  +  +  +  +  +  +

σ > 0 E = 0

A conducting slab inserted into a
region with field E_o (as shown 
in b)develops surface charge which 
cancels out E_o within the slab.  

E_o relates to surface charge 
as dictated by Gauss’s law and 
superposition principle. 

• The transient “time-constant” τ for the decay of charge density ρ (and
hence E, as claimed above) in a homogeneous4 conductor (constant σ)
can be obtained using the continuity equation

∂ρ

∂t
+ ∇ · J = 0

representing the mathematical statement of charge conservation (de-
rived in Lecture 16). Using J = σE and ∇ · E = ρ/εo, we have

∇ · J = σ∇ · E =
σ

εo
ρ

4See Fisher and Varney, Am. J. Phys., 44, 464 (1976), for a discussion of contact potential between
different metals.
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above, from which it follows that

∂ρ

∂t
+

σ

εo
ρ = 0 with a damped solution ρ(t) = ρ(0)e−

σ
εo

t.

The decay time-constant
τ =

εo

σ

is typically very short (∼ 10−18 s) in metallic conductors, which is why
such conductors are usually considered to be in steady-state (and have
zero interior fields).

• As a consequence: in electrostatic5 problems conducting volumes
of materials (e.g., chunks of copper) can be treated as equipotentials
having zero internal fields and finite surface charge densities ρs = n̂ ·D
expressed in terms of external fields D normal to the surface.

5Also applicable quasi-statically when externally applied fields Eo(t) change slowly with time-constants
much longer than εo/σ. The way conductors are treated in high frequency electromagnetic problems will
be described later on.

4



Dielectric materials and polarization:

• Dielectric materials consist of a large number of charge-neutral atoms
or molecules and ideally contain no mobile charge carriers (i.e., σ = 0).

• Electric fields produced by charges located outside or within a dielectric
material will polarize the dielectric — meaning that its constituent
atoms or molecules will be “stretched out” to expose their internal or
“bound” charges, electrons and protons — which will in turn cause the
electric field inside the dielectric to become weaker than (but not zero,
as in conductors) what the field would have been in the absence of
polarization effect.
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We will next examine this polarization process and see how Gauss’s law can
be re-stated to facilitate field calculations in dielectric materials containing
bound charge carriers, i.e., atomic/molecular electrons and protons which
are not free to drift away from one another indefinitely (neglecting possible
ionization events).

• Consider a static free-charge density ρ(z) that would produce a macro-
scopic field Eo satisfying ρ = εo∇·Eo in free space, producing, instead,
a field E = ẑEz inside a dielectric medium composed of an array of
neutral atoms or molecules.

Our objective is to relate the field E to Eo and ρ, and find a way
of calculating E when ρ is given.
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• In the presence of an electric field E = ẑEz in the dielectric each neutral
atom of the medium will be in a distorted (but not ripped apart) state
forming a ẑ oriented electric dipole, which can be visualized as a
proton-electron pair with a small proton displacement d in z direction
with respect to the electron.

– Consider a regular array of such dipoles

p ≡ edẑ,

with ∆x, ∆y, and ∆z spacings between the dipoles (see margin),
so that the volumetric dipole density is
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within the array, and, furthermore,

ρs =
e

∆x∆y

C
m2

is the magnitude of charge density of the adjacent proton and
electron layers (see margin again) formed by arrays of adjacent
dipoles displaced in z by intervals ∆z.

– Assuming that the array is infinite in extent in x and y directions,
the proton and electron layers with surface charge densities ±ρs
will produce interior electric fields

E1 = −ẑ
ρs
εo

= −ẑ
e/εo

∆x∆y
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(pointing in opposite direction to E = ẑEz), and exterior fields −ẑ
ρs

εo
≡ E1
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in between the dipole layers. Space averaged macroscopic electric
field within the array (with a spatial weighting proportional to
the size of regions with the fields E1 and E2) produced by the
polarized dipoles will then be

Ep = E1
d

∆z
+ E2

∆z − d

∆z
= −ẑ

ed/εo

∆x∆y∆z
= −Ndedẑ

εo
= −P

εo
,

where
P ≡ Ndedẑ = Ndp

is, by definition, macroscopic polarization field of the dielectric,
measured in units of C/m2 (same units as a surface charge density).

– The total macroscopic field E in the dielectric is then the sum of
field Eo produced by the free charge density ρ in the region and
the polarization field Ep = −P

εo
produced by bound charge carriers

of the neutral atoms and/or molecules of the dielectric, i.e.,

E = Eo −
P

εo
,

a result that shows a “reduced field strength” E (compared to Eo)
inside the dielectric since P and Eo are colinear.
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• To relate E directly to its ultimate cause ρ, we take the divergence of
the above relation and use ρ = εo∇ · Eo to find

∇ · (εoE) = ρ −∇ ·P [Gauss’s law inside material medium (1)]
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The equation just obtained will be interpreted as Gauss’s law for macro-
scopic electric field E by considering its right side as total charge density

ρt = ρ −∇ ·P

in which ρ denotes the volumetric density of free charge carriers in the
region, and, likewise, −∇·P denotes a volumetric density due to bound
charges revealed as a result of the polarization process.

– It is furthermore convenient to rearrange Gauss’s law as

∇ · (εoE + P) = ρ [Gauss’s law inside material medium (2)]

so that only the free charge density ρ is retained on the right and
the effect of bound charges is lumped on the left side together with
εoE.

– It is also convenient to revise the usual definition of electric dis-
placement as

D = εoE + P [Revised definition of electric displacement]
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so that Gauss’s law can be written in its usual form

∇ · D = ρ, [Gauss’s law inside material medium (3)]

but with only the free charge density included on the right and the
divergence of (revised) displacement on the left. Also, in integral
form we have ∮

S
D · dS =

∫

V
ρdV,

where the right side denotes the net free charge inside volume V .

• In a large class of dielectric materials macroscopic polarization P and
electric field E turn out to be linearly related as

P = εoχeE,

where χe ≥ 0 is a dimensionless quantity called electric susceptibil-
ity. For such materials

D = εoE + P = εo(1 + χe)E = εE,

where
ε = εo(1 + χe) ≡ εrεo

is known as the permittivity of the dielectric, and

εr = 1 + χe

its relative permittivity or dielectric constant.
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– Dielectric constant of free space is 1,

◦ for air εr ≈ 1.0006,
◦ for glass 4 − 10,
◦ dry-to-wet earth 5 − 10, silicon 11 − 12, distilled water 81.

In certain materials χe and ε are found to be tensors — mean-
ing that P and D are no longer aligned with E. Such materials
are said to be anisotropic, but they will not be studied in this
course. Also, there is an exception to the condition χe ≥ 0 — in
collisionless plasmas χe < 0, as discussed in ECE 450.

• In Gauss’s law applicable in material media ρ denotes the free charge
carrier density (after the revisions we have agreed to make). Further-
more, in perfect dielectrics there are no mobile free carriers and Gauss’s
law typically reduces to ∇·D = 0, while the corresponding boundary
condition equation for surfaces separating perfect dielectrics becomes

n̂
D+

D−

n̂ · (D+ − D−) = 0 ⇒ D+
n = D−

n ,

which says that normal component of displacement D is continuous on
such surfaces. This is accompanied by

n̂ × (E+ − E−) = 0 ⇒ E+
t = E−

t

stating the continuity of tangential components of E, which is univer-
sally true as we have seen earlier.

n̂
D+

D−
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