
9 Static fields in dielectric media
• Summarizing important results from last lecture:

– within a dielectric medium, displacement

D = εE = εoE +P,

and if the permittivity ε = εrεo is known, D and E can be calcu-
lated from free surface charge ρs or volume charge ρ in the region
without resorting to P.

– on surfaces separating perfect dielectrics, n̂ · (D+ −D−) = 0 typ-
ically, while n̂ ·D+ = ρs on a conductor-dielectric interface (with
n̂ pointing from the conductor toward the dielectric).

n̂
D+

D−

– Gauss’s law ∇ ·D = ρ (and its integral counterpart) includes only
the free charge density on its right side, which is typically zero in
many practical problems.

– once D and E have been calculated (typically using the boundary
condition equations), polarization P can be obtained as

P = D− εoE

if needed.

These rules will be used in the examples in this section.
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E = 18x̂ E = 18x̂E = 3x̂

ε = εo ε = εoε = εrεo

Example 1: A perfect dielectric slab having a finite thickness W in the x direction
is surrounded by free space and has a constant electric field E = 18x̂ V/m in
its exterior. Induced polarization of bound charges inside dielectric reduces the
electric field strength inside the slab from 18x̂ V/m to E = 3x̂ V/m. What are
the displacement field D and polarization P outside and inside the slab, and
what are the dielectric constant εr and electric susceptibility χe of the slab?

Solution: Displacement field outside the slab, where ε = εo, must be

D = εoE = x̂18εo
C
m2

.

The outside polarization P is of course zero. Boundary conditions at the interface
of the slab with free space require the continuity of normal component of D and
tangential component of E — both of these conditions would be satisfied if we
were to take D = x̂18εo C/m2 also within the dielectric slab. Thus, with E = 3x̂
V/m inside the slab, the condition D = εslabE within the slab requires that

εslab = 6εo.

Consequently, the dielectric constant of the slab is

εr = 1 + χe =
εslab
εo

= 6

and its electric susceptibility is

χe = εr − 1 = 5.

Finally, since D = εoE+P in general, polarization P inside the slab is

P = D− εoE = x̂18εo − εo3x̂ = x̂15εo
C
m2

.
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• Our revised definition of displacement D = εE, where ε = εrεo, implies,
when combined with E = −∇V and ∇ · D = ρ, a revised form of
Poisson’s equation

∇2V = −ρ

ε
,

– provided that dielectric constant εr is independent of position so
that ∇ ·D = ∇ · (εE) = ε∇ ·E is a valid intermediate step in the
derivation of Poisson’s equation.

– Under the same condition Laplace’s equation ∇2V = 0 also re-
mains valid.

– Dielectrics where εr is independent of position are said to be ho-
mogeneous.

◦ In inhomogeneous dielectrics where ε varies with position
neither equation is valid, and one has to resort to the full
form of Gauss’s law in field and potential calculations.

In other words, don’t use Laplace’s/Poisson’s equations
in inhomogeneous media.
In the next example we have two homogeneous slabs side-by-side
making up an inhomogeneous configuration. In that case we can
use Laplace/Poisson within the slabs one at a time and then match
the results at the boundary using boundary condition equations
as shown.
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V (2) =?

V (0) = 0

ρs = 2εo

z

V (z)

V (z) = Az

ρs = −2εo

2εo

εo

z=1

z=2

εo

2εo V (z) = A + B(z − 1)

Example 2: A pair of infinite conducting plates at z = 0 and z = 2 m carry equal
and opposite surface charge densities of −2εo C/m2 and 2εo C/m2, respectively.
Determine V (2) if V (0) = 0 and regions 0 < z < 1 m and 1 < z < 2 m are
occupied by perfect dielectrics with permittivities of εo and 2εo, respectively.

Solution: Given that V (0) = 0, we assume V (z) = Az, for some constant A in the
homogeneous region 0 < z < 1 m, since V (z) = Az satisfies the Laplace’s
equation as well as the boundary condition at z = 0.

This gives V (1) = A at z = 1 m, which then implies that we can take V (z) =
A+B(z− 1) for the second homogeneous region 1 < z < 2 m having a different
permittivity than the region below.

To determine the constants A and B, we will make use of boundary conditions at
z = 0 and z = 1 m interfaces:

• In the region 0 < z < 1 m, the electric field E = −∇(Az) = −Aẑ, and,
therefore displacement D = ε1E = −εoAẑ. Hence, the pertinent boundary
condition ẑ ·D(0) = ρs yields

ẑ ·D(0) = −εoA = −2εo ⇒ A = 2.

• Just below z = 1 m the displacement is D(1−) = −εoAẑ = −2εoẑ as we
found out above. Above z = 1 m, the electric field is E = −∇(A+ B(z −
1)) = −Bẑ, and, therefore, D(1+) = −2εoBẑ just above z = 1 m. Hence,
the pertinent boundary condition ẑ · (D(1+)−D(1−) = 0 yields

ẑ · (−2εoBẑ − (−2εoẑ)) = −2εoB + 2εo = 0 ⇒ B = 1.
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Based on above calculations of constants A and B, the potential solution for the
region is

V (z) =

{
2z V, 0 < z < 1

2 + (z − 1)V, 1 < z < 2.

It follows that V (2) = 3 V.

Note that electric fields −2ẑ V/m and −ẑ V/m in the bottom and top layers point
from high to low potential regions. Electric field E is discontinuous at the bound-
ary at z = 1 m while displacement D is continuous — the continuity of normally
directed D is demanded by boundary condition equations in the absence of sur-
face charge.

0

z

d

d1 ρs

ρs0 =

ρsd =

E =

E = 0 V = 0

E = 0 V = 0

If ρs in Example 3 is a slowly-
varying function of time, then
slowly varying E, ρs0, and ρsd cal-
culated with instantaneous values
of ρs would constitute quasi-static
solutions which are valid so long
as d % c/f , with f the highest
frequency in ρs(t).

Example 3: A pair of infinite conducting plates at z = 0 and z = d are grounded
and have equal potentials, say, V = 0. The region 0 < z < d is occupied by
free space (i.e., ε = εo) except that an infinite charge sheet with a static surface
charge density ρs is located at z = d1 < d. Determine (a) the electrostatic field
E(z) in regions 0 < z < d1 and d1 < z < d, and (b) the surface charge densities
ρs0 and ρsd at z = 0 and z = d on conductor surfaces if d1 = d/2.

Solution: (a) Laplace’s equation for the given geometry requires a linear (in z) poten-
tial solution in regions 0 < z < d1 and d1 < z < d. Since electrostatic E = −∇V ,
we can therefore represent the electric field in these regions as

E =

{
−ẑVo/d1, 0 < z < d1
+ẑVo/d2, d1 < z < d
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where Vo ≡ V (d1) and d2 ≡ d− d1. Hence,

D = εoE =

{
−ẑεoVo/d1, 0 < z < d1
+ẑεoVo/d2, d1 < z < d

,

and Maxwell’s boundary condition equation applied on z = d1 surface is

ẑ · (D(d+1 )−D(d−1 )) = ρs ⇒ εoVo

(
1

d2
+

1

d1

)
= ρs.

Thus

Vo =
ρs
εo

(
1

d2
+

1

d1

)−1

=
ρs
εo

d1d2
d1 + d2

=
ρs
εo

d1d2
d

.

Substituting Vo back into the expression for E, we have

E =

{
−ẑ ρs

εo
d2
d , 0 < z < d1

+ẑ ρs
εo

d1
d , d1 < z < d.

(b) The surface charge at z = 0 can be found by evaluating ẑ ·D = ẑ · εoE at z = 0.
Hence,

ρs0 = ẑ · εoE(0) = −d2
d
ρs

−−−−−→
d1 = d/2 − ρs

2
.

Likewise,
ρsd = −ẑ · εoE(d) = −d1

d
ρs

−−−−−→
d1 = d/2 − ρs

2
.
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V (2) =?

V (0) = 0

ρs = 2εo

z

ρs = −2εo

2εo

εo

z=2

ε(z) =
4εo

4 − z

εo

2εo

Ez(z)

Example 4: Between a pair of infinite conducting plates at z = 0 and z = 2 m, the
medium is a perfect dielectric with an inhomogeneous permittivity of

ε(z) =
4εo
4− z

.

Determine the electric potential V (2) on the top plate if V (0) = 0 and the
surface charge density is ρs = 2εo C/m2 on the bottom plate at z = 0. Note
that Laplace’s equation cannot be used in this problem since the medium is
inhomogeneous.

Solution: Consider Gauss’s law
∇ · (εE) = ρ

with ρ = 0 in the region 0 < z < 2 m. Assuming that E = ẑEz(z), because the
geometry is invariant in x and y, we have

∇ · (εE) = 0 ⇒ ∂

∂z
(εEz) = 0 ⇒ εEz = constant.

Thus the product εEz is invariant with respect to coordinate z, which implies
that

ε(z)Ez(z) = ε(0)Ez(0) ⇒ Ez(z) =
ε(0)

ε(z)
Ez(0) = Ez(0)(1−

z

4
)

after substituting for ε(z). To identify Ez(0), we apply the bottom boundary
condition ẑ ·D(0) = ρs, and obtain

Dz(0) = ε(0)Ez(0) = 2εo ⇒ Ez(0) =
2εo
ε(0)

= 2 V
m.
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To determine V (2), we integrate E = ẑ2(1− z
4) V/m from top to bottom plate

(grounded), obtaining

V (2) =

∫ 0

z=2
E · dl =

∫ 0

z=2
2(1− z

4
)dz

= 2(z − z2

8
)|02 = −2(2− 4

8
) = −2 · 3

2
= −3V.
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