9 Static fields in dielectric media

- Summarizing important results from last lecture:
- within a dielectric medium, displacement

$$
\mathbf{D}=\epsilon \mathbf{E}=\epsilon_{o} \mathbf{E}+\mathbf{P}
$$

and if the permittivity $\epsilon=\epsilon_{r} \epsilon_{o}$ is known, \mathbf{D} and \mathbf{E} can be calculated from free surface charge ρ_{s} or volume charge ρ in the region without resorting to \mathbf{P}.

- on surfaces separating perfect dielectrics, $\hat{n} \cdot\left(\mathbf{D}^{+}-\mathbf{D}^{-}\right)=0$ typically, while $\hat{n} \cdot \mathbf{D}^{+}=\rho_{s}$ on a conductor-dielectric interface (with \hat{n} pointing from the conductor toward the dielectric).
- Gauss's law $\nabla \cdot \mathbf{D}=\rho$ (and its integral counterpart) includes only the free charge density on its right side, which is typically zero in many practical problems.
- once \mathbf{D} and \mathbf{E} have been calculated (typically using the boundary condition equations), polarization \mathbf{P} can be obtained as

$$
\mathbf{P}=\mathbf{D}-\epsilon_{o} \mathbf{E}
$$

if needed.

These rules will be used in the examples in this section.

Example 1: A perfect dielectric slab having a finite thickness W in the x direction is surrounded by free space and has a constant electric field $\mathbf{E}=18 \hat{x} \mathrm{~V} / \mathrm{m}$ in its exterior. Induced polarization of bound charges inside dielectric reduces the electric field strength inside the slab from $18 \hat{x} \mathrm{~V} / \mathrm{m}$ to $\mathbf{E}=3 \hat{x} \mathrm{~V} / \mathrm{m}$. What are the displacement field \mathbf{D} and polarization \mathbf{P} outside and inside the slab, and what are the dielectric constant ϵ_{r} and electric susceptibility χ_{e} of the slab?

Solution: Displacement field outside the slab, where $\epsilon=\epsilon_{o}$, must be

$$
\mathbf{D}=\epsilon_{o} \mathbf{E}=\hat{x} 18 \epsilon_{o} \frac{\mathrm{C}}{\mathrm{~m}^{2}} .
$$

The outside polarization \mathbf{P} is of course zero. Boundary conditions at the interface of the slab with free space require the continuity of normal component of \mathbf{D} and tangential component of \mathbf{E} - both of these conditions would be satisfied if we were to take $\mathbf{D}=\hat{x} 18 \epsilon_{o} \mathbf{C} / \mathrm{m}^{2}$ also within the dielectric slab. Thus, with $\mathbf{E}=3 \hat{x}$ V / m inside the slab, the condition $\mathbf{D}=\epsilon_{s l a b} \mathbf{E}$ within the slab requires that

$$
\epsilon_{s l a b}=6 \epsilon_{o} .
$$

Consequently, the dielectric constant of the slab is

$$
\epsilon_{r}=1+\chi_{e}=\frac{\epsilon_{s l a b}}{\epsilon_{o}}=6
$$

and its electric susceptibility is

$$
\chi_{e}=\epsilon_{r}-1=5 .
$$

Finally, since $\mathbf{D}=\epsilon_{o} \mathbf{E}+\mathbf{P}$ in general, polarization \mathbf{P} inside the slab is

$$
\mathbf{P}=\mathbf{D}-\epsilon_{o} \mathbf{E}=\hat{x} 18 \epsilon_{o}-\epsilon_{o} 3 \hat{x}=\hat{x} 15 \epsilon_{o} \frac{\mathrm{C}}{\mathrm{~m}^{2}} .
$$

- Our revised definition of displacement $\mathbf{D}=\epsilon \mathbf{E}$, where $\epsilon=\epsilon_{r} \epsilon_{o}$, implies, when combined with $\mathbf{E}=-\nabla V$ and $\nabla \cdot \mathbf{D}=\rho$, a revised form of Poisson's equation

$$
\nabla^{2} V=-\frac{\rho}{\epsilon},
$$

- provided that dielectric constant ϵ_{r} is independent of position so that $\nabla \cdot \mathbf{D}=\nabla \cdot(\epsilon \mathbf{E})=\epsilon \nabla \cdot \mathbf{E}$ is a valid intermediate step in the derivation of Poisson's equation.
- Under the same condition Laplace's equation $\nabla^{2} V=0$ also remains valid.
- Dielectrics where ϵ_{r} is independent of position are said to be homogeneous.
- In inhomogeneous dielectrics where ϵ varies with position neither equation is valid, and one has to resort to the full form of Gauss's law in field and potential calculations.

In other words, don't use Laplace's/Poisson's equations in inhomogeneous media.
In the next example we have two homogeneous slabs side-by-side making up an inhomogeneous configuration. In that case we can use Laplace/Poisson within the slabs one at a time and then match the results at the boundary using boundary condition equations as shown.

Example 2: A pair of infinite conducting plates at $z=0$ and $z=2 \mathrm{~m}$ carry equal and opposite surface charge densities of $-2 \epsilon_{o} \mathrm{C} / \mathrm{m}^{2}$ and $2 \epsilon_{o} \mathrm{C} / \mathrm{m}^{2}$, respectively. Determine $V(2)$ if $V(0)=0$ and regions $0<z<1 \mathrm{~m}$ and $1<z<2 \mathrm{~m}$ are occupied by perfect dielectrics with permittivities of ϵ_{o} and $2 \epsilon_{o}$, respectively.

Solution: Given that $V(0)=0$, we assume $V(z)=A z$, for some constant A in the homogeneous region $0<z<1 \mathrm{~m}$, since $V(z)=A z$ satisfies the Laplace's equation as well as the boundary condition at $z=0$.

This gives $V(1)=A$ at $z=1 \mathrm{~m}$, which then implies that we can take $V(z)=$ $A+B(z-1)$ for the second homogeneous region $1<z<2 \mathrm{~m}$ having a different permittivity than the region below.

To determine the constants A and B, we will make use of boundary conditions at $z=0$ and $z=1 \mathrm{~m}$ interfaces:

- In the region $0<z<1 \mathrm{~m}$, the electric field $\mathbf{E}=-\nabla(A z)=-A \hat{z}$, and, therefore displacement $\mathbf{D}=\epsilon_{1} \mathbf{E}=-\epsilon_{o} A \hat{z}$. Hence, the pertinent boundary condition $\hat{z} \cdot \mathbf{D}(0)=\rho_{s}$ yields

$$
\hat{z} \cdot \mathbf{D}(0)=-\epsilon_{o} A=-2 \epsilon_{o} \quad \Rightarrow \quad A=2 .
$$

- Just below $z=1 \mathrm{~m}$ the displacement is $\mathbf{D}\left(1^{-}\right)=-\epsilon_{o} A \hat{z}=-2 \epsilon_{o} \hat{z}$ as we found out above. Above $z=1 \mathrm{~m}$, the electric field is $\mathbf{E}=-\nabla(A+B(z-$ $1))=-B \hat{z}$, and, therefore, $\mathbf{D}\left(1^{+}\right)=-2 \epsilon_{o} B \hat{z}$ just above $z=1 \mathrm{~m}$. Hence, the pertinent boundary condition $\hat{z} \cdot\left(\mathbf{D}\left(1^{+}\right)-\mathbf{D}\left(1^{-}\right)=0\right.$ yields

$$
\hat{z} \cdot\left(-2 \epsilon_{o} B \hat{z}-\left(-2 \epsilon_{o} \hat{z}\right)\right)=-2 \epsilon_{o} B+2 \epsilon_{o}=0 \quad \Rightarrow \quad B=1 .
$$

Based on above calculations of constants A and B, the potential solution for the region is

$$
V(z)= \begin{cases}2 z \mathrm{~V}, & 0<z<1 \\ 2+(z-1) \mathrm{V}, & 1<z<2\end{cases}
$$

It follows that $V(2)=3 \mathrm{~V}$.
Note that electric fields $-2 \hat{z} \mathrm{~V} / \mathrm{m}$ and $-\hat{z} \mathrm{~V} / \mathrm{m}$ in the bottom and top layers point from high to low potential regions. Electric field \mathbf{E} is discontinuous at the boundary at $z=1 \mathrm{~m}$ while displacement \mathbf{D} is continuous - the continuity of normally directed \mathbf{D} is demanded by boundary condition equations in the absence of surface charge.

Example 3: A pair of infinite conducting plates at $z=0$ and $z=d$ are grounded and have equal potentials, say, $V=0$. The region $0<z<d$ is occupied by free space (i.e., $\epsilon=\epsilon_{o}$) except that an infinite charge sheet with a static surface charge density ρ_{s} is located at $z=d_{1}<d$. Determine (a) the electrostatic field $\mathbf{E}(z)$ in regions $0<z<d_{1}$ and $d_{1}<z<d$, and (b) the surface charge densities $\rho_{s 0}$ and $\rho_{s d}$ at $z=0$ and $z=d$ on conductor surfaces if $d_{1}=d / 2$.

Solution: (a) Laplace's equation for the given geometry requires a linear (in z) potential solution in regions $0<z<d_{1}$ and $d_{1}<z<d$. Since electrostatic $\mathbf{E}=-\nabla V$, we can therefore represent the electric field in these regions as

$$
\mathbf{E}= \begin{cases}-\hat{z} V_{o} / d_{1}, & 0<z<d_{1} \\ +\hat{z} V_{o} / d_{2}, & d_{1}<z<d\end{cases}
$$

If ρ_{s} in Example 3 is a slowlyvarying function of time, then slowly varying $\mathbf{E}, \rho_{s 0}$, and $\rho_{s d}$ calculated with instantaneous values of ρ_{s} would constitute quasi-static solutions which are valid so long as $d \ll c / f$, with f the highest frequency in $\rho_{s}(t)$.
where $V_{o} \equiv V\left(d_{1}\right)$ and $d_{2} \equiv d-d_{1}$. Hence,

$$
\mathbf{D}=\epsilon_{o} \mathbf{E}=\left\{\begin{array}{ll}
-\hat{z} \epsilon_{o} V_{o} / d_{1}, & 0<z<d_{1} \\
+\hat{z} \epsilon_{o} V_{o} / d_{2}, & d_{1}<z<d
\end{array},\right.
$$

and Maxwell's boundary condition equation applied on $z=d_{1}$ surface is

$$
\hat{z} \cdot\left(\mathbf{D}\left(d_{1}^{+}\right)-\mathbf{D}\left(d_{1}^{-}\right)\right)=\rho_{s} \Rightarrow \epsilon_{o} V_{o}\left(\frac{1}{d_{2}}+\frac{1}{d_{1}}\right)=\rho_{s} .
$$

Thus

$$
V_{o}=\frac{\rho_{s}}{\epsilon_{o}}\left(\frac{1}{d_{2}}+\frac{1}{d_{1}}\right)^{-1}=\frac{\rho_{s}}{\epsilon_{o}} \frac{d_{1} d_{2}}{d_{1}+d_{2}}=\frac{\rho_{s}}{\epsilon_{o}} \frac{d_{1} d_{2}}{d} .
$$

Substituting V_{o} back into the expression for \mathbf{E}, we have

$$
\mathbf{E}= \begin{cases}-\hat{z} \frac{\rho_{\varrho}}{\epsilon_{2}} \frac{d_{2}}{d}, & 0<z<d_{1} \\ +\hat{z} \epsilon_{\rho_{o}} \frac{d_{1}}{d}, & d_{1}<z<d\end{cases}
$$

(b) The surface charge at $z=0$ can be found by evaluating $\hat{z} \cdot \mathbf{D}=\hat{z} \cdot \epsilon_{o} \mathbf{E}$ at $z=0$. Hence,

$$
\rho_{s 0}=\hat{z} \cdot \epsilon_{o} \mathbf{E}(0)=-\frac{d_{2}}{d} \rho_{s} \overrightarrow{d_{1}=d / 2}-\frac{\rho_{s}}{2} .
$$

Likewise,

$$
\rho_{s d}=-\hat{z} \cdot \epsilon_{o} \mathbf{E}(d)=-\frac{d_{1}}{d} \rho_{s} \overrightarrow{d_{1}=d / 2}-\frac{\rho_{s}}{2} .
$$

Example 4: Between a pair of infinite conducting plates at $z=0$ and $z=2 \mathrm{~m}$, the medium is a perfect dielectric with an inhomogeneous permittivity of

$$
\epsilon(z)=\frac{4 \epsilon_{o}}{4-z} .
$$

Determine the electric potential $V(2)$ on the top plate if $V(0)=0$ and the surface charge density is $\rho_{s}=2 \epsilon_{o} \mathrm{C} / \mathrm{m}^{2}$ on the bottom plate at $z=0$. Note that Laplace's equation cannot be used in this problem since the medium is inhomogeneous.

Solution: Consider Gauss's law

$$
\nabla \cdot(\epsilon \mathbf{E})=\rho
$$

with $\rho=0$ in the region $0<z<2 \mathrm{~m}$. Assuming that $\mathbf{E}=\hat{z} E_{z}(z)$, because the geometry is invariant in x and y, we have

$$
\nabla \cdot(\epsilon \mathbf{E})=0 \Rightarrow \frac{\partial}{\partial z}\left(\epsilon E_{z}\right)=0 \Rightarrow \epsilon E_{z}=\text { constant. }
$$

Thus the product ϵE_{z} is invariant with respect to coordinate z, which implies that

$$
\epsilon(z) E_{z}(z)=\epsilon(0) E_{z}(0) \Rightarrow E_{z}(z)=\frac{\epsilon(0)}{\epsilon(z)} E_{z}(0)=E_{z}(0)\left(1-\frac{z}{4}\right)
$$

after substituting for $\epsilon(z)$. To identify $E_{z}(0)$, we apply the bottom boundary condition $\hat{z} \cdot \mathbf{D}(0)=\rho_{s}$, and obtain

$$
D_{z}(0)=\epsilon(0) E_{z}(0)=2 \epsilon_{o} \quad \Rightarrow \quad E_{z}(0)=\frac{2 \epsilon_{o}}{\epsilon(0)}=2 \frac{V}{\mathrm{~m}}
$$

To determine $V(2)$, we integrate $\mathbf{E}=\hat{z} 2\left(1-\frac{z}{4}\right) \mathrm{V} / \mathrm{m}$ from top to bottom plate (grounded), obtaining

$$
\begin{aligned}
V(2) & =\int_{z=2}^{0} \mathbf{E} \cdot d \mathbf{l}=\int_{z=2}^{0} 2\left(1-\frac{z}{4}\right) d z \\
& =\left.2\left(z-\frac{z^{2}}{8}\right)\right|_{2} ^{0}=-2\left(2-\frac{4}{8}\right)=-2 \cdot \frac{3}{2}=-3 \mathrm{~V} .
\end{aligned}
$$

