13 Current sheet, solenoid, vector potential and
current loops
In the following examples we will calculate the magnetic fields B = u,H

established by some simple current configurations by using the integral form
of static Ampere’s law.

Example 1: Consider a uniform surface current density J, = J,Z A/m flowing on
x = 0 plane (see figure in the margin) — the current sheet extends infinitely in
y and z directions. Determine B and H.

Solution: Since the current sheet extends infinitely in y and z directions we expect B
to depend only on coordinate x. Also, the field should be the superposition of the
fields of an infinite number of current filaments, which suggests, by right-hand-
rule, B = gB(x), where B(z) is an odd function of z. To determine B(x), such
that B(—xz) = —B(z), we apply Ampere’s law by computing the circulation of
B around the rectangular path C' shown in the figure in the margin. We expand

%B.dl:uolg
C

B(x)L+0—B(—z)L+0 = u,JsL,

as

from which we obtain

o
2

OJS A JS
= B= ;Q'uz sgn(z) and H = g—sgn(z).

B(x) i

As shown in Example 1 mag-
netic field of a current sheet
is independent of distance
|z| from the current sheet.
Also H changes discontinu-
ously across the current sheet

by an amount J.



Example 2: Consider a slab of thickness W over —% <z < % which extends in-
finitely in y and z directions and conducts a uniform current density of J = 2.J,

A/m?. Determine H if the current density is zero outside the slab.

Solution: Given the geometric similarities between this problem and Example 1, we
postulate that B = gB(x), where B(x) is an odd function of z, that is B(—x) =
—B(x). To determine B(x) we apply Ampere’s law by computing the circulation
of B around the rectangular path C' shown in the figure in the margin. For

x < %, we expand
7{ B-dl=u,lc
c

B(x)L+0—B(—z)L+0 = p,J,2xL = B(x) = p,Jyz.

For x > %, the expansion gives

as

|44
B(z)L+0—-B(—2)L+ 0= pu,JWL = B(z)= ,UoJo?-

Hence, we find that

H _ /gJO‘CE7 |x| < %
§Jo5-sgn(x), otherwise.

Note that the solution plotted in the margin shows no discontinuity at x = i%

or elsewhere. w w X
2 2

The figure in the margin depicts a finite section of an infinite solenoid.
A solenoid can be constructed in practice by winding a long wire into a
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multi loop coil as depicted. A solenoid with its loop carrying a current [
in qg direction (as shown), produces effectively a surface current density of
J, = IN¢ A/m, where N is the number density (1/m) of current loops in
the solenoid. In Example 3 we compute the magnetic field of the infinite
solenoid using Ampere’s law.

Example 3: An infinite solenoid having N loops per unit length is stacked in z-
direction, each loop carrying a current of I A in counter-clockwise direction when
viewed from the top (see margin). Determine H.

Solution: Assuming that B = 0 outside the solenoid, and also B is independent of
z within the solenoid, we find that Ampere’s law indicates for the circulation C
shown in the margin

7{ B-dl=pu,lc = LB=p,INL.
c
This leads to
B=u,IN and H=ZIN
for the field within the solenoid.
The assumption of zero magnetic flux density B = 0 for the exterior region is justified
because:
(a) if the exterior field is non-zero, then it must be independent of x and y (follows

from Ampere’s law applied to any exterior path C' with I = 0), and

(b) the finite interior flux ¥ = p,I Nma® can only be matched with the flux of
the infinitely extended exterior region when the constant exterior flux density

(because of (a)) is vanishingly small.
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unit length carrying
I amps per loop

B = u,IN



e Static electric fields: Curl-free and are governed by
VXE=0, V-D=p where D = €¢E
with € = €,¢,,.
e Static magnetic fields: Divergence-free and are governed by
V-B=0, VxH=J where B=uH

with p = p,p, — relative permeabilities p, other than unity (for free
space) will be explained later on.

Mathematically, we can generate a divergence-free vector field B(z,y, 2)
as

B=VxA

by taking the curl of any vector field A = A(x,y, z) (just like we can generate
a curl-free E by taking the gradient of any scalar field =V (x, vy, 2)).
Verification: Notice that

0 0
9r oy 0z
V-VxA = 3(v><A)x+3(v><A)y+3(V><A)Z= o 85 g
Ox oy 0z vooy oz
A, A, A,

0 0A, O0A, 0 0A., 0A, 0 04, 04,

ax(ﬁy_ﬁz)_ay(ﬁx_ﬁz +6z(8x &y):O

o [f B =V X A represents a magnetostatic field, then A is called mag-
netostatic potential or vector potential.
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— Vector potential A can be used in magnetostatics in similar ways
to how electrostatic potential V' is used in electrostatics.

o In electrostatics we can assign V' = 0 to any point in space
that is convenient in a given problem.

o In magnetostatics we can assign V - A to any scalar that is
convenient in a given problem.

— For example, if we make the assignment!
V-A=0,
then we find that
VxB=VxVxA=V(V-A)-V’A =-V*A.
This is a nice and convenient outcome, because, when combined with
VxH=J = VxB=yu,,

it produces

V2A - _IuOJ7
which is the magnetostatic version of Poisson’s equation
vy =L
€o

IWith this assignment — known as Coulomb gauge — A acquires the physical meaning of “potential
momentum per unit charge”, just as scalar potential V' is “potential enegy per unit charge” (see Konopinski,

Am. J. Phys., 46, 499, 1978).



— In analogy with solution

Vi(r) :/ p(r') /’d?’r’

dme,lr —

of Poisson’s equation, it has a solution

A(r) = /Mdz)’r’.

dr|r — 1|

Given any static? current density J(r), the above equation can be used to
obtain the corresponding vector potential A that simultaneously satisfies

V-A=0 and V x A =B.

Once A is available, obtaining B = V x A is then just a matter of taking a
curl.

e Magnetic flux density B of a single current loop I can be calculated
after determining its vector potential as follows:

— For a loop of radius a on z = 0 plane, we can express the corresponding current

density as
/ (_yla xla 0)
J(r) = I8(2")6(/22 + y? — a) L)
[ p!2 + y/2

where the ratio on the right is the unit vector ¢E’ :

— Inserting this into the general solution for vector potential, and performing
the integration over z’, we obtain

2Also, in quasi-statics we use J(r’, ) to obtain A(r,¢) and B = V x A over regions small compared to
A =c/f, with f the highest frequency in J(r’, ).

o A
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N AN,
A(r) = a /5(\/:13’2+y’2—a) (=4, ,0) dx'dy’

4m V@ =22+ (y— )+ 22?1
N AR
- A /5(7“' —a) =y, 2. 0) r'dr'de’
dm Ve =2+ y—y)?+ 2
OI T - i /, /, O N R
= # (zasing’,acos¢’,0) d¢' = 2 A.(r) + §A,(r).

Ar )z \/(x —acos¢)? + (y — asin¢')? + 22
Given that A, = 0, it can be shown that B =V x A leads to

V

Or Jy

From the expected azimuthal symmetry of B about the z-axis, it is sufficient
to evaluate these on, say, y = 0 plane — after some algebra, and dropping the
primes, we find, on y = 0 plane,

woal [T 2COoS @
4 /_W (22 + a? + 22 — 2ax cos ¢)3/? ¢
woal [T Zsin ¢
B, = d
Y 4rm /_W (22 + a2 + 22 — 2ax cos ¢)3/2 ¢,
and ;o 5
Lo a — T COS
B, = do.
4t /_7T (22 + a? + 22 — 2ax cos ¢)3/2 ¢

We note that B, = 0 since the B, integrand above is odd in ¢ and the
integration limits are centered about the origin. Hence, the field on y = 0

plane is given as
B=2B,+ 2B,

with B, and B, defined above.

There are no closed form expressions for the B, and B, integrals above for an
arbitrary (z, z).



o However, it can be easily seen that if x = 0 (i.e., along the z-axis), B, = 0
(as symmetry would dictate) and

woal [T a Lol a?
B, = A (a2 + Z2)3/2d¢ - 2(a? + 22)3/2 N
: ENI=
For |z| > a, ) :::\Q ; ; ;/ﬁi::
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which is positive and varies with the inverse third power of distance |z|.

— Also, B, and B, integrals can be performed numerically. Figure ] / RQEE:: :
in the margin depicts the pattern of B on y = 0 plane for a loop | jj;j;; AN ;;;Qii ,5
of radius @ = 1 computed using Mathematica. S T
NENENNNY ; h / S e
e Note that circulation ¢, B - dl around each closed field line (‘linking” 7700 S e Zﬁﬁii:
the current loop) equals a fixed value of u,I — this dictates that the RN N LT
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e [t can be shown that the equations for magnetic field lines of a current
loop on, say, y = 0 plane, can be expressed as

r = Lsin’6

in terms of radial distance r from the origin and zenith angle 6
measured from the z axis. Clearly, parameter L in this formula is the
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radial distance of the field line on 6 = 90° plane, and the field line Bl
formula is accurate only for » > a. The Earth’s magnetic field had
such a magnetic dipole topology as shown.

Lorentz force due to the magnetic fields of a pair of current loops — also
known as magnetic dipoles — turns out to be “attractive” when the cur-
rent directions agree (see margin). Bar magnets carrying “equivalent”

Loops with parallel

current loops of atomic origins interact with one another in exactly the currents attract one

same way — i.e., as governed by the second term of Lorentz force.



