13 Current sheet, solenoid, vector potential and current loops

In the following examples we will calculate the magnetic fields $\mathbf{B}=\mu_{o} \mathbf{H}$ established by some simple current configurations by using the integral form of static Ampere's law.

Example 1: Consider a uniform surface current density $\mathbf{J}_{s}=J_{s} \hat{z} \mathrm{~A} / \mathrm{m}$ flowing on $x=0$ plane (see figure in the margin) - the current sheet extends infinitely in y and z directions. Determine \mathbf{B} and \mathbf{H}.

Solution: Since the current sheet extends infinitely in y and z directions we expect \mathbf{B} to depend only on coordinate x. Also, the field should be the superposition of the fields of an infinite number of current filaments, which suggests, by right-handrule, $\mathbf{B}=\hat{y} B(x)$, where $B(x)$ is an odd function of x. To determine $B(x)$, such that $B(-x)=-B(x)$, we apply Ampere's law by computing the circulation of \mathbf{B} around the rectangular path C shown in the figure in the margin. We expand

$$
\oint_{C} \mathbf{B} \cdot d \mathbf{l}=\mu_{o} I_{C}
$$

as

$$
B(x) L+0-B(-x) L+0=\mu_{o} J_{s} L
$$

from which we obtain

$$
B(x)=\frac{\mu_{o} J_{s}}{2} \Rightarrow \mathbf{B}=\hat{y} \frac{\mu_{o} J_{s}}{2} \operatorname{sgn}(x) \text { and } \mathbf{H}=\hat{y} \frac{J_{s}}{2} \operatorname{sgn}(x)
$$

Example 2: Consider a slab of thickness W over $-\frac{W}{2}<x<\frac{W}{2}$ which extends infinitely in y and z directions and conducts a uniform current density of $\mathbf{J}=\hat{z} J_{o}$ $\mathrm{A} / \mathrm{m}^{2}$. Determine \mathbf{H} if the current density is zero outside the slab.

Solution: Given the geometric similarities between this problem and Example 1, we postulate that $\mathbf{B}=\hat{y} B(x)$, where $B(x)$ is an odd function of x, that is $B(-x)=$ $-B(x)$. To determine $B(x)$ we apply Ampere's law by computing the circulation of \mathbf{B} around the rectangular path C shown in the figure in the margin. For $x<\frac{W}{2}$, we expand

$$
\oint_{C} \mathbf{B} \cdot d \mathbf{l}=\mu_{o} I_{C}
$$

as

$$
B(x) L+0-B(-x) L+0=\mu_{o} J_{o} 2 x L \Rightarrow B(x)=\mu_{o} J_{o} x .
$$

For $x \geq \frac{W}{2}$, the expansion gives

$$
B(x) L+0-B(-x) L+0=\mu_{o} J_{o} W L \Rightarrow B(x)=\mu_{o} J_{o} \frac{W}{2}
$$

Hence, we find that

$$
\mathbf{H}= \begin{cases}\hat{y} J_{o} x, & |x|<\frac{W}{2} \\ \hat{y} J_{o} \frac{W}{2} \operatorname{sgn}(x), & \text { otherwise } .\end{cases}
$$

Note that the solution plotted in the margin shows no discontinuity at $x= \pm \frac{W}{2}$ or elsewhere.

The figure in the margin depicts a finite section of an infinite solenoid. A solenoid can be constructed in practice by winding a long wire into a

multi loop coil as depicted. A solenoid with its loop carrying a current I in $\hat{\phi}$ direction (as shown), produces effectively a surface current density of $\mathbf{J}_{s}=I N \hat{\phi} \mathrm{~A} / \mathrm{m}$, where N is the number density $(1 / \mathrm{m})$ of current loops in the solenoid. In Example 3 we compute the magnetic field of the infinite solenoid using Ampere's law.

Example 3: An infinite solenoid having N loops per unit length is stacked in z direction, each loop carrying a current of $I \mathrm{~A}$ in counter-clockwise direction when viewed from the top (see margin). Determine \mathbf{H}.

Solution: Assuming that $\mathbf{B}=0$ outside the solenoid, and also \mathbf{B} is independent of z within the solenoid, we find that Ampere's law indicates for the circulation C shown in the margin

$$
\oint_{C} \mathbf{B} \cdot d \mathbf{l}=\mu_{o} I_{C} \Rightarrow L B=\mu_{o} I N L
$$

This leads to

$$
B=\mu_{o} I N \text { and } \mathbf{H}=\hat{z} I N
$$

for the field within the solenoid.
The assumption of zero magnetic flux density $\mathbf{B}=0$ for the exterior region is justified because:
(a) if the exterior field is non-zero, then it must be independent of x and y (follows from Ampere's law applied to any exterior path C with $I_{C}=0$), and
(b) the finite interior flux $\Psi=\mu_{o} I N \pi a^{2}$ can only be matched with the flux of the infinitely extended exterior region when the constant exterior flux density (because of (a)) is vanishingly small.

Infinite solenoid with N loops per I amps per loop I amps per loop

$$
B=\mu_{o} I N
$$

- Static electric fields: Curl-free and are governed by

$$
\nabla \times \mathbf{E}=0, \quad \nabla \cdot \mathbf{D}=\rho \text { where } \mathbf{D}=\epsilon \mathbf{E}
$$

with $\epsilon=\epsilon_{r} \epsilon_{o}$.

- Static magnetic fields: Divergence-free and are governed by

$$
\nabla \cdot \mathbf{B}=0, \quad \nabla \times \mathbf{H}=\mathbf{J} \text { where } \mathbf{B}=\mu \mathbf{H}
$$

with $\mu=\mu_{r} \mu_{o}$ - relative permeabilities μ_{r} other than unity (for free space) will be explained later on.

Mathematically, we can generate a divergence-free vector field $\mathbf{B}(x, y, z)$ as

$$
\mathbf{B}=\nabla \times \mathbf{A}
$$

by taking the curl of any vector field $\mathbf{A}=\mathbf{A}(x, y, z)$ (just like we can generate a curl-free \mathbf{E} by taking the gradient of any scalar field $-V(x, y, z)$).

Verification: Notice that

$$
\begin{aligned}
\nabla \cdot \nabla \times \mathbf{A} & =\frac{\partial}{\partial x}(\nabla \times \mathbf{A})_{x}+\frac{\partial}{\partial y}(\nabla \times \mathbf{A})_{y}+\frac{\partial}{\partial z}(\nabla \times \mathbf{A})_{z}=\left|\begin{array}{ccc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
& =\frac{\partial}{\partial x}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)-\frac{\partial}{\partial y}\left(\frac{\partial A_{z}}{\partial x}-\frac{\partial A_{x}}{\partial z}\right)+\frac{\partial}{\partial z}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)=0
\end{aligned}
$$

- If $\mathbf{B}=\nabla \times \mathbf{A}$ represents a magnetostatic field, then \mathbf{A} is called magnetostatic potential or vector potential.
- Vector potential A can be used in magnetostatics in similar ways to how electrostatic potential V is used in electrostatics.
- In electrostatics we can assign $V=0$ to any point in space that is convenient in a given problem.
- In magnetostatics we can assign $\nabla \cdot \mathbf{A}$ to any scalar that is convenient in a given problem.
- For example, if we make the assignment ${ }^{1}$

$$
\nabla \cdot \mathbf{A}=0
$$

then we find that

$$
\nabla \times \mathbf{B}=\nabla \times \nabla \times \mathbf{A}=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}=-\nabla^{2} \mathbf{A}
$$

This is a nice and convenient outcome, because, when combined with

$$
\nabla \times \mathbf{H}=\mathbf{J} \Rightarrow \nabla \times \mathbf{B}=\mu_{o} \mathbf{J}
$$

it produces

$$
\nabla^{2} \mathbf{A}=-\mu_{o} \mathbf{J}
$$

which is the magnetostatic version of Poisson's equation

$$
\nabla^{2} V=-\frac{\rho}{\epsilon_{o}}
$$

[^0]- In analogy with solution

$$
V(\mathbf{r})=\int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{4 \pi \epsilon_{o}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} \mathbf{r}^{\prime}
$$

of Poisson's equation, it has a solution

$$
\mathbf{A}(\mathbf{r})=\int \frac{\mu_{o} \mathbf{J}\left(\mathbf{r}^{\prime}\right)}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} \mathbf{r}^{\prime}
$$

Given any static ${ }^{2}$ current density $\mathbf{J}(\mathbf{r})$, the above equation can be used to obtain the corresponding vector potential \mathbf{A} that simultaneously satisfies

$$
\nabla \cdot \mathbf{A}=0 \text { and } \nabla \times \mathbf{A}=\mathbf{B} .
$$

Once \mathbf{A} is available, obtaining $\mathbf{B}=\nabla \times \mathbf{A}$ is then just a matter of taking a curl.

- Magnetic flux density B of a single current loop I can be calculated after determining its vector potential as follows:
- For a loop of radius a on $z=0$ plane, we can express the corresponding current density as

$$
\mathbf{J}\left(\mathbf{r}^{\prime}\right)=I \delta\left(z^{\prime}\right) \delta\left(\sqrt{x^{\prime 2}+y^{\prime 2}}-a\right) \frac{\left(-y^{\prime}, x^{\prime}, 0\right)}{\sqrt{x^{\prime 2}+y^{\prime 2}}}
$$

where the ratio on the right is the unit vector $\hat{\phi}^{\prime}$.

- Inserting this into the general solution for vector potential, and performing the integration over z^{\prime}, we obtain

[^1]\[

$$
\begin{aligned}
\mathbf{A}(\mathbf{r}) & =\frac{\mu_{o} I}{4 \pi} \int \delta\left(\sqrt{x^{\prime 2}+y^{\prime 2}}-a\right) \frac{\left(-y^{\prime}, x^{\prime}, 0\right)}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{2}} \sqrt{x^{\prime 2}+y^{\prime 2}}} d x^{\prime} d y^{\prime} \\
& =\frac{\mu_{o} I}{4 \pi} \int \delta\left(r^{\prime}-a\right) \frac{\left(-y^{\prime}, x^{\prime}, 0\right)}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{2}} r^{\prime}} r^{\prime} d r^{\prime} d \phi^{\prime} \\
& =\frac{\mu_{o} I}{4 \pi} \int_{-\pi}^{\pi} \frac{\left(-a \sin \phi^{\prime}, a \cos \phi^{\prime}, 0\right)}{\sqrt{\left(x-a \cos \phi^{\prime}\right)^{2}+\left(y-a \sin \phi^{\prime}\right)^{2}+z^{2}}} d \phi^{\prime} \equiv \hat{x} A_{x}(\mathbf{r})+\hat{y} A_{y}(\mathbf{r}) .
\end{aligned}
$$
\]

- Given that $A_{z}=0$, it can be shown that $\mathbf{B}=\nabla \times \mathbf{A}$ leads to

$$
B_{x}=-\frac{\partial A_{y}}{\partial z}, \quad B_{y}=\frac{\partial A_{x}}{\partial z}, \quad B_{z}=\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y} .
$$

- From the expected azimuthal symmetry of \mathbf{B} about the z-axis, it is sufficient to evaluate these on, say, $y=0$ plane - after some algebra, and dropping the primes, we find, on $y=0$ plane,

$$
\begin{aligned}
& B_{x}=\frac{\mu_{o} a I}{4 \pi} \int_{-\pi}^{\pi} \frac{z \cos \phi}{\left(x^{2}+a^{2}+z^{2}-2 a x \cos \phi\right)^{3 / 2}} d \phi, \\
& B_{y}=\frac{\mu_{o} a I}{4 \pi} \int_{-\pi}^{\pi} \frac{z \sin \phi}{\left(x^{2}+a^{2}+z^{2}-2 a x \cos \phi\right)^{3 / 2}} d \phi,
\end{aligned}
$$

and

$$
B_{z}=\frac{\mu_{o} a I}{4 \pi} \int_{-\pi}^{\pi} \frac{a-x \cos \phi}{\left(x^{2}+a^{2}+z^{2}-2 a x \cos \phi\right)^{3 / 2}} d \phi .
$$

- We note that $B_{y}=0$ since the B_{y} integrand above is odd in ϕ and the integration limits are centered about the origin. Hence, the field on $y=0$ plane is given as

$$
\mathbf{B}=\hat{x} B_{x}+\hat{z} B_{z}
$$

with B_{x} and B_{z} defined above.

- There are no closed form expressions for the B_{x} and B_{z} integrals above for an arbitrary (x, z).
- However, it can be easily seen that if $x=0$ (i.e., along the z-axis), $B_{x}=0$ (as symmetry would dictate) and

$$
B_{z}=\frac{\mu_{o} a I}{4 \pi} \int_{-\pi}^{\pi} \frac{a}{\left(a^{2}+z^{2}\right)^{3 / 2}} d \phi=\frac{\mu_{o} I a^{2}}{2\left(a^{2}+z^{2}\right)^{3 / 2}} .
$$

For $|z| \gg a$,

$$
B_{z} \approx \frac{\mu_{o} I a^{2}}{2|z|^{3}}
$$

which is positive and varies with the inverse third power of distance $|z|$.

- Also, B_{x} and B_{z} integrals can be performed numerically. Figure in the margin depicts the pattern of \hat{B} on $y=0$ plane for a loop of radius $a=1$ computed using Mathematica.
- Note that circulation $\oint_{C} \mathbf{B} \cdot d \mathbf{l}$ around each closed field line ("linking" the current loop) equals a fixed value of $\mu_{o} I$ - this dictates that the average field strength $|\mathbf{B}|$ of a current loop is stronger on shorter field lines closer to the current loop than on longer field lines linking the loop further out. As a result $|\mathbf{B}|$ can be shown to vary as r^{-3} for large r.
- It can be shown that the equations for magnetic field lines of a current
 loop on, say, $y=0$ plane, can be expressed as

$$
r=L \sin ^{2} \theta
$$

in terms of radial distance r from the origin and zenith angle θ measured from the z axis. Clearly, parameter L in this formula is the
radial distance of the field line on $\theta=90^{\circ}$ plane, and the field line formula is accurate only for $r \gg a$. The Earth's magnetic field had such a magnetic dipole topology as shown.

- Lorentz force due to the magnetic fields of a pair of current loops - also known as magnetic dipoles - turns out to be "attractive" when the current directions agree (see margin). Bar magnets carrying "equivalent" current loops of atomic origins interact with one another in exactly the same way - i.e., as governed by the second term of Lorentz force.

[^0]: ${ }^{1}$ With this assignment - known as Coulomb gauge - A acquires the physical meaning of "potential momentum per unit charge", just as scalar potential V is "potential enegy per unit charge" (see Konopinski, Am. J. Phys., 46, 499, 1978).

[^1]: ${ }^{2}$ Also, in quasi-statics we use $\mathbf{J}\left(\mathbf{r}^{\prime}, t\right)$ to obtain $\mathbf{A}(\mathbf{r}, t)$ and $\mathbf{B}=\nabla \times \mathbf{A}$ over regions small compared to $\lambda=c / f$, with f the highest frequency in $\mathbf{J}\left(\mathbf{r}^{\prime}, t\right)$.

