15 Inductance — solenoid, shorted coax

e Given a current conducting path C the magnetic flux W linking C' can
be expressed as a function of current I circulating around C'.

e [f the function is linear, i.e., if we have a linear flux-current relation
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— Differentiating the flux-current relation with respect to time ¢, and - Pra—
using the fact that V(t)=L—
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we find that the emf of inductor L is simply
dl
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which is a voltage rise across the inductor in the direction of cur-
rent [ (with LCC% denoting the voltage drop in the same direction
as used in circuit courses).

'A mutual inductance Mi,, by contrast, relates the flux linking coil Cy to a current /; flowing in a
second coil (.



— For an inductor consisting of n-loops, the emf £ measured around
n-loops is naturally
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implying an inductance .
L = n—.
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Example 1: An n-turn coil has a resistance R = 12 and inductance of 1 yH. If it is
conducting 3 A of current at ¢t = 0, determine I(¢) for ¢t > 0.

Solution: Current flow in the resistive n-turn coil will be driven by emf & = —L%
matching the voltage drop RI. Hence
dl dl R R 6
—L— =RI —+—-1=0 I(t)=1(0)e 2" =3 17" A.
o o - + 7 = I(t) (0)e™z e

e Asillustrated by above example, current I around a resitive loop C will
in general be obtained by solving a differential equation constructed
using the emf of the loop.

— I = % used last lecture assumes that emf produced by the induced
current is small compared to an externally produced emf.

e We continue with typical inductance calculations.
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Inductance of long solenoid: Consider a long solenoid with length ¢,
cross-sectional area A, and a density of N loops per unit length as examined
in Example 3 of Lecture 12 (see figure in the margin). As determined in
Example 3, the magnetic flux density in the interior of the solenoid is

B = ,IN2

while n = N/ is the number of turns of the solenoid. Thus, the inductance
of the solenoid with n = N/ turns is

¥ Nl(u,IN)A
ST

L = N?u,Al.

e As we know from our circuit courses, an inductor L such as the solenoid
coil considered above can be used to store energy. An inductor con-
nected to an external circuit with a quasi-static current I develops a
voltage drop V = L% across its terminals? and absorbs power at an
instentaneous rate

dl =~ d 1
P=VI=L—I=—(zLI"
dt dt(2 )
implying a stored energy of
1 1 |B.|? 1
= —LI* = —N?p,Al1* = = A0 = —p,|H.|* Al
W= AR o 5Hol |

in an inductor in a conducting state.

2Assuming a physical size much smaller than a wavelength A = ¢/ f for the highest frequency in I(t).
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e Notice that the stored energy of the solenoid is

1 1
_OH,ZQ:_OH'H
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times its volume Af occupied by the field H inside the solenoid. That

suggests that

1
w:§u0H-H

can be interpreted as stored magnetostatic energy per unit volume in
general.

— Also both inductance L and stored energies W and w would have
1 replacing p, in material media with permeabilities

= (14 Xm) o

and magnetic susceptibilities x,,, in analogy with the concepts of
permittivity € = (1 4+ x.)€, and electrical susceptibility xe.

o Permeability and magnetic susceptibility notions will be ex-
amined in a future lecture.



Inductance of shorted coax: Consider a coaxial cable of some length ¢
which is “shorted” at one end (with a wire connecting the inner and outer
conductors), so that a steady current I can flow on the inner conductor of
radius a to return on the interior surface of the outer conductor at radius

b after having circulated through the short. We will next determine the
inductance L of such an inductor after first computing the magnetic flux
density B, that will be produced by the inner conductor current I. In B,
calculation we will assume ¢ > b so that an “infinite coax” approximation
can be invoked.

e Expanding the integral form of Ampere’s law
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over a circular integration contour C' of a radius » > a, we find that
the magnetic flux density in the interior of the coax cable is
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e Therefore, the magnetic flux linked by the closed current path I (see
figure in the margin) is
b
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Shorted coax circulates
a current I linking a
magnetic flux\J
confined to a region
bounded by the outer
conductor of the coax.
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Clearly, we have a linear relation ¥ = LI, with

I = ln%g
= o e

which is the inductance of a shorted coax of a finite length £.

— The inductance of the coax per unit length is

of the same coax configuration.

Notice how £ and C are proportional to €, and u,, respectively,
having proportionality constants which are inverses of one another.



Inductance of shorted parallel plates: If a pair of parallel plates of
areas A = W/ and separation d were shorted at one end, we would obtain
effectively an inductor with a per length inductance

d

L= W:uo
that accompanies per length capacitance
W

C=—¢
d

of the same parallel plate configuration. This follows from a generalization of
our finding above that the proportionality constants of £ and C are arithmetic
inverses of one another.



