
16 Charge conservation, continuity eqn, displace-
ment current, Maxwell’s equations

• Total electric charge is conserved in nature in the following sense:
if a process generates (or eliminates) a positive charge, it always does
so as accompanied by a negative charge of equal magnitude.

– Example: Photoionization of atoms and molecules can generate
free positive ions and free negative electrons in pairs (see margin
figure). Photoionization is a process that converts bound charge
carriers into free charge carriers.

– Example: Recombination when a positive ion and an electron
get together to produce a charge neutral atom or molecule.

– Example: Annihilation of an electron (negative charge) by a
positron (positive charge of equal magnitude) and the reverse pro-
cess of pair creation.
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(b) At t=t1 volume V contains
a proton and a free electron after
the ionization of the hydrogen 
atom.  There is still no net charge
in the volume.
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(c) At t=t2 volume V now contains
only a proton after the exit of 
free electron through surface S.
Now V contains a net charge e.
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As a consequence, if the total electric charge QV contained in any finite
volume V changes as a function of time, this change must be attributed
to a net transport of charge, i.e., electric current, across the bounding
surface S of volume V as detailed below.
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• Consider two distinct surfaces S1 and S2 bounded by the same closed
loop C (as shown in the margin) such that a volume V is contained
between the two surfaces.

– Let
I1 =

∫

S1

J · dS1

and
I2 =

∫

S2

J · dS2

denote currents flowing through surfaces S1 and S2, respectively.
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– Note that current I1 through surface S1 enters volume V , while
current I2 through surface S2 exits volume V (with the directions
assigned to dS1 and dS2).

– If I1 != I2, then current out is not matched by the current in,
and as a result, the net charge QV contained in volume V increases
with time at a rate I1 − I2 provided that charge is conserved in
the sense discussed above. In that case, we have

dQV

dt
= I1 − I2.

This relationship can be expressed as

d

dt

∫

V
ρdV =

∫

S1

J · dS1 −
∫

S2

J · dS2
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since, in terms of charge density ρ, charge in volume V is

QV =

∫

V
ρdV.

The expression can also be cast as
∫

V

∂ρ

∂t
dV = −

∮

S
J · dS

where S is the union of surfaces S1 and S2 enclosing V , and dS
is an outward area element of S (see margin). This relationship is
known as continuity equation. Its differential form is Continuity

equation
∂ρ

∂t
= −∇ · J,

which follows from the integral form above as a consequence of
divergence theorem (recall Lecture 4).

Continuity equation is a mathematical re-statement of the
principle of conservation of charge.
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• While Faraday’s law

∇× E = −∂B

∂t
indicates that time-varying B induces time-varying electric fields E,
Ampere’s law, written as

∇×H = J,

makes no such claim about a time-varying E inducing a time-varying

B = µoH.

– This “asymmetry” was noted by James Clerk Maxwell who realized
that the form of Ampere’s law given above must be “incomplete”
under time-varying situations. Revised

Ampere’s
law (with
“displacement
current”)

– Noting the inconsistency of Ampere’s law with the continuity equa-
tion under time varying conditions, he re-wrote the Ampere’s law
as

∇×H = J +
∂D

∂t
in 1861 by adding the term on the right which is now called the
“displacement current”.

◦ Maxwell postulated that the displacement current term is needed
in Ampere’s law because only then the divergence of Ampere’s
law avoids falling into conflict with charge conservation (under
time varying conditions).
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Verification of Maxwell’s claim: Since ∇ × H is divergence-free
(just like the curl of vector potential A, namely B), it follows that
the divergence of Maxwell’s modified Ampere’s law — often called
Ampere-Maxwell equation — is

∇ · (∇×H) = ∇ · J +
∂

∂t
∇ ·D = 0.

– In the absence of the second term due to displacement current,
this results would be inconsistent with the continuity equation

∂ρ

∂t
+ ∇ · J = 0,

unless ∂ρ
∂t = 0 (the static case).

– By, contrast, including the second term, the result above is rec-
ognized as the continuity equation per se, since by Gauss’s law
— assuming that it applies with no change under time varying
situations —

∂

∂t
∇ ·D =

∂ρ

∂t
.

• The modified Ampere’s law

∇×H = J +
∂D

∂t

postulated by Maxwell under the assumption that Gauss’s law is also
valid under time-varying conditions, leads to some specific predictions
about how time-varying fields should behave.
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• These predictions — concerning the propagation of electromagnetic
waves — were validated experimentally by Heinrich Hertz around 1888.

– The experiments confirmed that time-varying electric and mag-
netic fields obey collectively (and at microscopic scales) the differ-
ential relations Maxwell’s

equations
∇ ·D = ρ Gauss’s law
∇ ·B = 0

∇×E = −∂B

∂t
Faraday’s law

∇×H = J +
∂D

∂t
, Ampere’s law

where
D = εoE and B = µoH

provided that ρ and J describe the distributions of all charges and
currents associated with free and bound charge carriers1. Alter-
natively, the same differential relations — known collectively as
Maxwell’s equations — are also valid for macroscopic fields, pro-
vided that ρ and J describe only the free charge contributions
and

D = εE and B = µH

1In the classical domain, down to scales of about !/mc, the Compton wavelength — at shorter scales
quantized and generalized versions (known as electroweak theory) are needed.
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in terms of suitably defined permittivities and permeabilities ε and
µ — see next Lecture.

• The unnamed Maxwell equation

∇ ·B = 0

can be viewed to be a consequence of Faraday’s law

∇× E = −∂B

∂t

and the fact that magnetic monopoles have never been observed.

Explanation: Since ∇ × E is divergence-free, taking the divergence
of Faraday’s law, we get

∇ · (∇×E) = − ∂

∂t
∇ ·B = 0.

This constraint requires ∇ · B to an invariant scalar at all locations
in space. As a consequence, if ∇ · B = 0 at some instant in time, it
should remain so at all times. Given that ∇ · B = 0 for static fields,
this relationship must also continue to be valid when B starts changing
with time.

The fact that ∇ ·B remains fixed at a zero value everywhere, whereas ∇ ·D
varies like ρ, is in fact a consequence of the fact that there appears to be no
magnetic charges (monopoles) in nature. Had there been “point charges for
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magnetic fields” in nature, ∇ · B would have equaled the density of those
charges, and magnetic field lines would have started and stopped on them
(rather than looping into themselves). But no one has observed of any evi-

n̂
D+

D−
w

Constraint
∮

C

H · dl =

∫

S

(J +
∂D

∂t
) · dS

around the dotted path yields

n̂× (H+ −H−) = Js

in w → 0 limit.

Constraint
∮

S

B · dS = 0

applied over the dotted volume (seen in
profile) yields

B+
n − B−

n = 0

in w → 0 limit.

dence for such magnetic charges anywhere, even going back to the very early
times in the history of the universe (accessible by making observations of
very far astronomical objects). So, ∇ ·B = 0.

• Finally, the full set of Maxwell’s boundary condition equations concern-
ing any interface with a normal unit vector n̂ are

n̂ · (D+ −D−) = ρs

n̂ · (B+ −B−) = 0

n̂× (E+ − E−) = 0

n̂× (H+ −H−) = Js

– We had already seen how the first and third boundary condition
equations arise.

– The second boundary condition equation concerning the normal
component of B is another consequence of the absence of magnetic
charges (see margin).

– A detailed justification of the last boundary condition concerning
tangential H will be given explicitly during Lecture 19. This equa-
tion allows a discontinuous change in the tangential component of
H if the interface contains a non-zero surface current Js.
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