
17 Magnetization current, Maxwell’s equations
in material media

• Consider the microscopic-form Maxwell’s equations

∇ · D = ρ Gauss’s law
∇ · B = 0

∇× E = −∂B

∂t
Faraday’s law

∇× H = J +
∂D

∂t
, Ampere’s law

where

D = εoE

B = µoH.

• Direct applications of these equations in material media containing a
colossal number of bound charges is impractical.

• Macroscopic-form Maxwell’s equations suitable for material media are
obtained by first expressing ρ and J above as the macroscopic quantities

ρ = ρf −∇ · P

and
J = Jf +

∂P

∂t
+ ∇× M

where
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– subscripts f indicate charge and current density contributions due
to free charge carriers,

– the term −∇ · P denotes the bound charge density,
– the term ∂P

∂t denotes the polarization current density due to
oscillating dipoles (already discussed in Lecture 11), and

– ∇×M is a “magnetization current density” also due to bound
charges, an effect that we will discuss and clarify later in this
section.

Using these expressions in Gauss’s and Ampere’s laws

∇ · εoE = ρ Gauss’s law

∇× µ−1
o B = J +

∂εoE

∂t
, Ampere’s law

we obtain

∇ · (εoE + P) = ρf Gauss’s law

∇× (µ−1
o B − M) = Jf +

∂

∂t
(εoE + P), Ampere’s law.

Now, re-define D and H as

D = εeE + P = εE

and
H = µ−1

o B − M = µ−1B,
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respectively, and drop the subscripts f which will no longer be needed.
Using these new definitions, the full set of Maxwell’s equations now
read as (the same form as before)

∇ · D = ρ Gauss’s law
∇ · B = 0

∇× E = −∂B

∂t
Faraday’s law

∇× H = J +
∂D

∂t
, Ampere’s law

with

D = εE

B = µH,

where ρ and J are understood to be due to free charge carriers only.

• We had already seen many aspects of the above procedure for obtaining
the macroscopic form field equations earlier on (e.g., in Lectures 8 and
11).

– In particular we were already familiar with the revised definition
of D = εE along with the concept of medium permittivity ε.

– The new feature above that requires further discussions is the rela-
tion B = µH along with the concept of medium permeability
µ. The details of this relation are connected to the concept of
“magnetization current” which we discuss next.
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• Just like “free charge” density and currents, “bound charge” densities
and currents also have to satisfy the continuity equation

∂ρ

∂t
+ ∇ · J = 0.

– This equation is automatically satisfied if we substitute

ρ = ρb = −∇ · P

and
J = Jb =

∂P

∂t
in it.
Verification:

∂ρb

∂t
+ ∇ · Jb =

∂

∂t
(−∇ · P) + ∇ · ∂P

∂t
= 0

since the order of time derivative and divergence can be exchanged
on the right.

– But the same equation is also satisfied if we take

Jb =
∂P

∂t
+ ∇× M

for any vector field M simply because vector ∇×M is divergence
free.
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Consequently, it is not sufficient to represent bound currents in mate-
rial media as simply ∂P

∂t , if bound carriers can also conduct divergence-
free currents due to closed-loop orbits.

– In fact, electrons “orbiting” atomic nuclei certainly produce such
divergence-free current loops at microscopic scales — we account
for such currents at macroscopic scales by including a magnetiza-
tion current term ∇× M in Jb.

– Also, bound charge motions within nucleons1 — proton and neu-
trons — produce magnetization currents ∇× M.

– Even bare electrons can produce magnetization currents ∇ × M
because of their intrinsic spin2.

Once ∇× M is included in Jb, it follows from Ampere’s law that

H = µ−1
o B− M

where M is referred to as magnetization field.

1Physical models of nucleons involve bound charge carriers known as quarks which cannot be observed
in a free state.

2All elementary charge carriers carry an intrinsic magnetization proportional to charge-to-mass ratio
q
m and a “spin angular momentum” having quantized values of ±!

2 N.m.s in any measurement direction.
Using Heisenberg’s uncertainty principle, ∆p∆r ≥ !

2 , we can interpret the spin angular momentum of
an elementary particle as the lower bound of ∆p∆r, the product of quantum uncertainties in particle
momentum and position. There is no classical interpretation of spin angular momentum for point particles.
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• Lab measurements — e.g., inductances L measured for coils wound
around magnetic materials (see below) — show that for a large class of
materials

M ≡ µ−1
o B − H

varies linearly with H (which is of course possible only when B also
varies linearly with H).

– In that case we write
M = χmH,

where χm is a dimensionless parameter called magnetic suscep-
tibility, and obtain a relation Magnetic

susceptibility
and
permeability

B = µo(1 + χm)H = µH,

where
µ = µo(1 + χm)

is called the permeability of the medium.

Recall from Lecture 15 that L ∝ µ when inductors are wound around mate-
rials with permeability µ.

Hence, lab measurements of L can provide us with estimates of µ for
various materials.

• For a large class of materials with M ∝ H, it is observed that |χm| ' 1.
In that case, the material is called
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– Diamagnetic if χm < 0:

◦ Diamagnetism occurs when an applied magnetic field induces
electron orbital angular momentum in a collection of atoms
having no permanent magnetization M. These are materials
that we ordinarily think of being non-magnetic (wood, glass,
etc.). They are in fact very weakly repulsed by permanent
magnets.

– Paramagnetic if χm > 0:

◦ Paramagnetism occurs when an applied magnetic field co-
aligns the spin angular momentum of electrons in atoms hav-
ing a permanent magnetization — intrinsic magnetic moments
(and hence M) are then aligned to point in the applied B di-
rection. This occurs for atoms with unfilled inner electron
shells, because in filled shells electron spins are opposite (due
to Pauli exclusion principle) and cancel one another. Unfilled
outer shells do not usually give rise to paramagnetism because
interactions between adjacent atoms in that case give rise to
opposite spins of their outer shell electrons. Paramagnetic ma-
terials are are very weakly attracted to permanent magnets.

• In a small class of materials known as ferromagnets — iron, nickel,
and cobalt, which are metals with atoms having unfilled inner electron
shells, and their various alloys — M can arise spontaneously (because
permanent magnetic dipole moments of nearby atoms produced by elec-
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tron spins become co-aligned as a consequence of conduction electrons
moving through the lattice) and turns out to be a non-linear function
of present and past values of H, in which case experimentally obtained
relations, denoted as

B = B(H),

need to be used in Maxwell’s equations. It is even possible to have
non-zero B in such materials with zero H — permanent magnets have
that property.

• First principles modeling of χm or B = B(H) relation requires quan-
tum mechanics (classical models turn out to be not accurate enough).
Overall, the models give rise to frequency dependent results, involv-
ing loss as well as resonance features (also exhibited in Lorentz-Drude
models of χe examined in Lecture 11) relevant for applications including
various magnetic imaging techniques.
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