
18 Wave equation and plane TEM waves in source-
free media
With this lecture we start our study of the full set of Maxwell’s equations
shown in the margin by first restricting our attention to homogeneous and
non-conducting media with constant ε and µ and zero σ.

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B

∂t

∇×H = J +
∂D

∂t
.

• Our first objective is to show that non-trivial (i.e., non-zero) time-
varying field solutions of these equations can be obtained even in the
absence of ρ and J.

– We already know static ρ and J to be the source of static electric
and magnetic fields.

– We will come to understand that time varying ρ and J, which
necessarily obey the continuity equation

∂ρ

∂t
+∇ · J = 0,

constitute the source of time-varying electromagnetic fields.

Despite these intimate connections between the sources ρ and J and
the fields

D = εE and B = µH,

non-trivial field solutions can exist in source-free media as we will see
shortly.
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• Such field solutions in fact represent electromagnetic waves, a familiar
example of which is light.

• Another example is radiowaves that we use when we communicate
using wireless devices such as radios, cell-phones, WiFi, etc.

• Different types of electromagnetic waves are distinguished by their os-
cillation frequencies, and include

– radiowaves,
– microwaves,
– infrared,
– light,
– ultraviolet,
– X-rays, and gamma rays,

going across the electromagnetic spectrum from low to high fre-
quencies.

We are well aware that these types of electromagnetic waves can travel
across empty regions of space — e.g., from sun to Earth — transporting
energy and heat as well as momentum.

– Next, we will discover their general properties by examining Maxwell’s
equations under the restriction ρ = J = 0.
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• In source-free and homogeneous regions where ρ = J = 0 and ε and
µ are constant, we can simplify Maxwell’s equations as shown in the
margin.

∇ ·E = 0

∇ ·H = 0

∇×E = −µ
∂H

∂t

∇×H = ε
∂E

∂t
.

– If there are non-trivial solutions of these equations, namely E(r, t) $=
0 and H(r, t) $= 0, they evidently need to be divergence-free.

– They also have to be “curly” according to the last two equations:
Faraday’s and Ampere’s laws.

• Next we will make use of vector identity

∇× (∇×E) = ∇(∇ ·E)−∇2E

which should be familiar from an earlier homework problem.

– Since the electric fieldE is divergence-free in the absence of sources,
this identity simplifies as

∇× (∇× E) = −∇2E

where in the right side ∇2E is the Laplacian of E.
– Using this result we can express the curl of Faraday’s law as

∇× [∇× E = −µ
∂H

∂t
] ⇒ −∇2E = −µ

∂

∂t
∇×H,

which combines with the Ampere’s law to produce

∇2E = µε
∂2E

∂t2
,
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which can be written explicitly as 3D vector
wave
equation

∂2E

∂x2
+

∂2E

∂y2
+

∂2E

∂z2
= µε

∂2E

∂t2
.

Recall that our objective is to see whether a non-trivial time-varying solution
of Maxwell’s equations can exist in source-free media.

Our objective at this stage is not finding a general solution; it is instead
identifying a simple example of a non-trivial time-varying E(r, t), if we can.

For example, can a field solution

E(r, t) = x̂Ex(z, t)

that only depends on z and t and “polarized” in x-direction exist? If it can
exist, what would be the properties of this x-polarized solution?

• To find out, we note that with E = x̂Ex(z, t), the above “wave equation”
is reduced to 1D scalar

wave
equation

∂2Ex

∂z2
= µε

∂2Ex

∂t2
,

an equation that is known as a 1D scalar wave equation, as opposed
to the 3D vector wave equation above.

– Now, by substitution, we can easily show that

Ex = cos(ω(t−√
µεz)),
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satisfies the 1D wave equation and represents an x-polarized time-
periodic field solution with an oscillation frequency ω.

– 1D wave equation can also be satisfied by

Ex = cos(ω(t +
√
µεz)).

Let us jointly refer to these solutions as

Ex = cos(ω(t∓ z

v
)),

where
v ≡ 1

√
µε

has the dimensions of m/s (i.e., velocity) and the algebraic signs ∓
distinguish between the “travel directions” of these possible “wave solu-
tions” as elaborated later on.

• Let us next find out the magnetic field intensity H that accompanies
the x-polarized electric field wave solution

E = x̂ cos(ω(t∓ z

v
)).

– Since the curl of E is

∇×E =

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex 0 0

∣∣∣∣∣∣∣
= ŷ

∂Ex

∂z
= ±ŷ sin(ω(t∓ z

v
))
ω

v
,
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Faraday’s law
∇×E = −µ

∂H

∂t
requires that H should satisfy

−µ
∂H

∂t
= ±ŷ sin(ω(t∓ z

v
))
ω

v
.

Finding the time-dependent anti-derivative (and remembering v =
1/
√
µε), we obtain

H = ±ŷ

√
ε

µ
cos(ω(t∓ z

v
)).

• The results above, namely our x-polarized non-trivial field solutions of
Maxwell’s equations in source-free homogeneous space, can be repre-
sented more compactly as

x

y

z

H

E = x̂f(t − z

v
)

E × H

x

yz

H
E = x̂f(t +

z

v
)

E × HE = x̂f(t∓ z

v
) and H = ±ŷ

f(t∓ z
v)

η
,

where
f(t) ≡ cos(ωt) = Re{ejωt} =

ejωt + e−jωt

2
is the field waveform,

η ≡
√

µ

ε

is known as intrinsic impedance (and measured in units of ohms).
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• Since Maxwell’s equations with constant µ and ε are linear and time-
invariant (LTI), the field solutions above can be further generalized by
using their weighted and time-shifted superpositions such as

f(t) =
∑

n

An cos(ωnt + θn)

and
f(t) =

1

2π

∫ ∞

−∞
F (ω)ejωtdω

having frequency dependent weighting factors An and F (ω). And since
according to Fourier analysis all practical signals f(t) can be synthe-
sized in these forms, it follows that the field solutions above are valid
with arbitrary waveforms f(t). d’Alembert

wave
solutionsSolutions

E, H ∝ f(t∓ z

v
)

of the 1D scalar wave equation with arbitrary f(t) are known as d’Alembert
wave solutions.

• d’Alembert solution
E, H ∝ f(t− z

v
)

describes electromagnetic waves traveling in +z direction, whereas so-
lution

E, H ∝ f(t +
z

v
)
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describes electromagnetic waves traveling in −z direction (see margin).
In each case the travel speed is

v =
1

√
µε

−−−−−−→free space
1

√
µoεo

≡ c ≈ 3× 108 m/s.

• H solution can be obtained from E by dividing it with η and rotating
it by 90◦ so that vector E×H points in direction the waves travel.

• E can be obtained from H by multiplying it with η and rotating it by
90◦ so that vector E × H — called Poynting vector — once again
points in direction the waves travel.
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In each case the intrinsic impedance is

η =

√
µ

ε
−−−−−−→free space

√
µo

εo
≡ ηo ≈ 120π ohms.

Transformation rules above also hold for y-polarized wave solutions

E = ŷf(t∓ z

v
) and H = ∓x̂

f(t∓ z
v)

η
.

Question: What about z-polarized waves

E = ẑf(t∓ z

v
),

can they exist?

Answer: No, z-polarized waves ẑf(t∓ z
v) traveling in ±z direction cannot

exist because they would violate the divergence-free condition ∇·E = 0.

8


