18 Wave equation and plane TEM waves in source-
free media
With this lecture we start our study of the full set of Maxwell’s equations

shown in the margin by first restricting our attention to homogeneous and
non-conducting media with constant € and p and zero o.

e Our first objective is to show that non-trivial (i.e., non-zero) time- V-D =p
varying field solutions of these equations can be obtained even in the V-B =0
0B
absence of p and J. VxE — —
_ : ' i oD
We already know static p and J to be the source of static electric VxH = J+22
and magnetic fields. ot

— We will come to understand that time varying p and J, which
necessarily obey the continuity equation
dp

STV I=0,

constitute the source of time-varying electromagnetic fields.

Despite these intimate connections between the sources p and J and
the fields
D=¢E and B =puH,

non-trivial field solutions can exist in source-free media as we will see
shortly.



e Such field solutions in fact represent electromagnetic waves, a familiar
example of which is light.

e Another example is radiowaves that we use when we communicate
using wireless devices such as radios, cell-phones, WiF1i, etc.

e Different types of electromagnetic waves are distinguished by their os-
cillation frequencies, and include

— radiowaves,
— microwaves,
— infrared,

— light,

— ultraviolet,

— X-rays, and gamma rays,

going across the electromagnetic spectrum from low to high fre-
quencies.

We are well aware that these types of electromagnetic waves can travel
across empty regions of space — e.g., from sun to Earth — transporting
energy and heat as well as momentum.

— Next, we will discover their general properties by examining Maxwell’s
equations under the restriction p =J = 0.



e In source-free and homogeneous regions where p = J = 0 and € and
1 are constant, we can simplify Maxwell’s equations as shown in the
margin.

— If there are non-trivial solutions of these equations, namely E(r, t) #
0 and H(r,t) # 0, they evidently need to be divergence-free.

— They also have to be “curly” according to the last two equations:
Faraday’s and Ampere’s laws.

e Next we will make use of vector identity
Vx(VxE)=V(V-E)-VE
which should be familiar from an earlier homework problem.
— Since the electric field E is divergence-free in the absence of sources,
this identity simplifies as
V x(VxE)=-VE
where in the right side VZE is the Laplacian of E.

— Using this result we can express the curl of Faraday’s law as

oH 0

Vx[VXE=—u—] = —-V’E=—u—V x H,
which combines with the Ampere’s law to produce
O’E
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which can be written explicitly as 3D vector

PE  O°E  9°E O°E wave
572 + 01 + 5.2 = ,ueﬁ. equation
Recall that our objective is to see whether a non-trivial time-varying solution
of Maxwell’s equations can exist in source-free media.
Our objective at this stage is not finding a general solution; it is instead
identifying a simple example of a non-trivial time-varying E(r, ), if we can.
For example, can a field solution
E(r,t) =2FE,(2,1)
that only depends on z and ¢ and “polarized” in x-direction exist? If it can
exist, what would be the properties of this z-polarized solution?
e To find out, we note that with E = 2F,(z,t), the above “wave equation”
is reduced to ) , 1D scalar
0 E:z: _ ,u€8 EI) wave
0z° ot equation

an equation that is known as a 1D scalar wave equation, as opposed
to the 3D vector wave equation above.

— Now, by substitution, we can easily show that

E, = cos(w(t — \/1€z)),
4



satisfies the 1D wave equation and represents an z-polarized time-
periodic field solution with an oscillation frequency w.

— 1D wave equation can also be satisfied by
E, = cos(w(t + \/pez)).
Let us jointly refer to these solutions as
E, = cos(w(t F %)),

where

has the dimensions of m/s (i.e., velocity) and the algebraic signs F
distinguish between the “travel directions” of these possible “wave solu-
tions” as elaborated later on.

e Let us next find out the magnetic field intensity H that accompanies
the z-polarized electric field wave solution

E = % cos(w(t F %))

— Since the curl of E is
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Faraday’s law

oH

VXE:—I[LE

requires that H should satisty

OoH . Zow
ey T £y sin(w(t F ;))5

Finding the time-dependent anti-derivative (and remembering v =

1/\/1€), we obtain
H = ), |- cos(w(t F ) t :
= — cos(w =)).
2V F -

e The results above, namely our z-polarized non-trivial field solutions of T
Maxwell’s equations in source-free homogeneous space, can be repre- H > R ”
sented more compactly as E=2f(t+ ;)

z tF=
E=2f(tF-) and H:igM7 vE><H
v n

where . .
ejwt + e—jwt

f(t) = cos(wt) = Re{e"} = 5

is known as intrinsic impedance (and measured in units of ohms).

is the field waveform,

U
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e Since Maxwell’s equations with constant i and € are linear and time-
invariant (LTT), the field solutions above can be further generalized by
using their weighted and time-shifted superpositions such as

f(t) = Z A, cos(wpt + 6),)

and

() = — / " F(w)e dw

having frequency dependent weighting factors A,, and F'(w). And since

according to Fourier analysis all practical signals f(¢) can be synthe-

sized in these forms, it follows that the field solutions above are valid

with arbitrary waveforms f(t). d’Alembert
wave

Solutions solutions

E, Ho f(tF)
v
of the 1D scalar wave equation with arbitrary f(t) are known as d’Alembert
wave solutions.

e d’Alembert solution

z

describes electromagnetic waves traveling in +z direction, whereas so-
lution

z
E,HOCf(t—F;)



Traveling wave in +z direction with speed v=c:

Time plots at z=0 and z>0:

describes electromagnetic waves traveling in —z direction (see margin).

In each case the travel speed is

I — 1
v =—— free space —— =c~ 3 x 10°m/s.
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e H solution can be obtained from E by dividing it with n and rotating

Position plots at t=0 and t>0

it by 90° so that vector EE x H points in direction the waves travel. E'/@iﬂ“c)
e E can be obtained from H by multiplying it with 1 and rotating it by - -
90° so that vector E x H — called Poynting vector — once again o
points in direction the waves travel. c=300 kn in 1 millisec
In each case the intrinsic impedance is
ALO Fundamental signal waveforms: REVIEW
n = free space — =1, ~ 1207 ohms. u(t) wlt — 1)
E() I —— 1 .
Unit-step
Transformation rules above also hold for y-polarized wave solutions 0 i PR
t t_to
A z A f(t :F E) rect(;) rect( . )
E=q9f(tF ;) and H = :Fx—n v : — )
. o T T t T t, Tt
Question: What about z-polarized waves 3 3 T
t t—t
R z AE) D)
E=2ftF-) AN AN
can they exist? 5 0 t "5 5t
tu(t) — ult )]
Answer: No, z-polarized waves Zf(t F 2) traveling in £z direction cannot ' Ramp_
exist because they would violate the divergence-free condition V-E = 0. ot T



