21 Monochromatic waves and phasor notation

- Recall that we reached the traveling-wave d'Alembert solutions

$$
\mathbf{E}, \mathbf{H} \propto f\left(t \mp \frac{z}{v}\right)
$$

via the superposition of time-shifted and amplitude-scaled versions of

$$
f(t)=\cos (\omega t),
$$

namely the monochromatic waves

$$
A \cos \left[\omega\left(t \mp \frac{z}{v}\right)\right]=A \cos (\omega t \mp \beta z)
$$

with amplitudes A where

$$
\beta \equiv \frac{\omega}{v}=\omega \sqrt{\mu \epsilon}
$$

can be called wave-number in analogy with wave-frequency ω.

- As depicted in the margin, monochromatic solutions $A \cos (\omega t \mp \beta z)$ are periodic in position and time, with the wave-number β being essentially a spatial-frequency, the spatial counterpart of ω.

This is an important point that you should try to understand well - it has implications for signal processing courses related to images and vision.

- In general, monochromatic solutions of 1D wave-equations obtained in various branches of science and engineering can all be represented in the same format as above in terms of wave-frequency / wave-wavenumber pairs ω and β having a ratio

$$
v \equiv \frac{\omega}{\beta}
$$

recognized as the wave-speed and specific dispersion relations such as:

1. TEM waves in perfect dielectrics:

$$
\beta=\omega \sqrt{\mu \epsilon}
$$

2. Acoustic waves in monoatomic gases with temperature T (K) and atomic mass $m(\mathrm{~kg})$:

$$
\beta=\omega \sqrt{\frac{m}{\frac{5}{3} K T}},
$$

3. TEM waves in collisionless plasmas (ionized gases) with plasma frequency $\omega_{p}=\sqrt{\frac{N e^{2}}{m \epsilon_{o}}}$:

$$
\beta=\frac{1}{c} \sqrt{\omega^{2}-\omega_{p}^{2}}
$$

Dispersion relations
between
wavefrequency ω and wavenumber β determine the propagation velocity

$$
v=\frac{\omega}{\beta}=\lambda f
$$

for all types of wave motions.

- For any type of wave solution - TEM, acoustic, plasma wave - once the dispersion relation is available (meaning that it has been derived from fundamental physical laws governing the specific wave type), wave propagation velocity is always obtained as

$$
v=\frac{\omega}{\beta}
$$

or, equivalently, as

$$
v=\frac{\lambda}{T}=\lambda f
$$

where

$$
\lambda \equiv \frac{2 \pi}{\beta} \quad \text { Wavelength }
$$

and

$$
T=\frac{2 \pi}{\omega} \equiv \frac{1}{f} \quad \text { Waveperiod. }
$$

THE ELECTROMAGNETIC SPECTRUM

- Monochromatic x-polarized waves

$$
\mathbf{E}=E_{o} \cos (\omega t \mp \beta z) \hat{x} \frac{\mathrm{~V}}{\mathrm{~m}}
$$

can also be expressed in phasor form as

$$
\tilde{\mathbf{E}}=E_{o} e^{\mp j \beta z} \hat{x} \frac{\mathrm{~V}}{\mathrm{~m}}
$$

such that

$$
\operatorname{Re}\left\{\tilde{\mathbf{E}} e^{j \omega t}\right\}=E_{o} \cos (\omega t \mp \beta z) \hat{x}=\mathbf{E}
$$

in view of Euler's identity.
Example 1: Study the following table to understand monochromatic wave fields and their phasors.

Field	Phasor	Comment
$\mathbf{E}=\cos (\omega t+\beta y) \hat{z}$	$\tilde{\mathbf{E}}=e^{j \beta y} \hat{z}$	z-polarized wave propagating in $-y$ direction
	$\tilde{\mathbf{H}}=-\frac{e^{j \beta y}}{\eta} \hat{x}$	magnetic phasor that accompanies $\tilde{\mathbf{E}}$ above
$\mathbf{H}=\sin (\omega t-\beta z) \hat{y}$	$\hat{\mathbf{H}}=-j e^{-j \beta z} \hat{y}$	wave propagating in $+z$ direction
$\mathbf{E}=\eta \sin (\omega t-\beta z) \hat{x}$	$\mathbf{E}=-j \eta e^{-j \beta z} \hat{x}$	electric field phasor of \mathbf{H} above
which is an x-polarized field (see the right column)		

Example 2: Given that

$$
\mathbf{H}=\hat{x} H^{+} \cos (\omega t-\beta z)+\hat{y} H^{-} \sin (\omega t+\beta z)
$$

representing the sum of wave fields propagating in opposite directions, the corresponding phasor

$$
\tilde{\mathbf{H}}=\hat{x} H^{+} e^{-j \beta z}-j \hat{y} H^{-} e^{j \beta z} .
$$

The corresponding \mathbf{E}-field phasor is

$$
\tilde{\mathbf{E}}=-\hat{y} \eta H^{+} e^{-j \beta z}+j \hat{x} \eta H^{-} e^{j \beta z},
$$

from which

$$
\mathbf{E}=-\hat{y} \eta H^{+} \cos (\omega t-\beta z)-\hat{x} \eta H^{-} \sin (\omega t+\beta z) .
$$

Make sure to check that all the signs make sense, and if you think you have caught an error, let us know.

- In general, we transform between plane TEM wave phasors $\tilde{\mathbf{E}}$ and $\tilde{\mathbf{H}}$ as follows:

1. To obtain $\tilde{\mathbf{H}}$ from $\tilde{\mathbf{E}}$: divide $\tilde{\mathbf{E}}$ by η and rotate the vector direction so that vector $\tilde{\mathbf{S}} \equiv \tilde{\mathbf{E}} \times \tilde{\mathbf{H}}^{*}$ points in the propagation direction of the wave - more on complex vector $\tilde{\mathbf{S}}$ later on.
2. To obtain $\tilde{\mathbf{E}}$ from $\tilde{\mathbf{H}}$: multiply $\tilde{\mathbf{H}}$ by η and rotate the vector direction so that vector $\tilde{\mathbf{S}} \equiv \tilde{\mathbf{E}} \times \tilde{\mathbf{H}}^{*}$ points in the propagation direction of the
wave.

Example 3: On $z=0$ plane we have a monochromatic surface current specified as

$$
\mathbf{J}_{s}=\hat{x} f(t)=\hat{x} 2 \cos (\omega t) \frac{\mathrm{A}}{\mathrm{~m}}=\operatorname{Re}\left\{\hat{x} 2 e^{j \omega t}\right\}
$$

Determine wave field phasors $\tilde{\mathbf{E}}^{ \pm}$and $\tilde{\mathbf{H}}^{ \pm}$for plane TEM waves propagating away from the $z=0$ surface on both sides (assumed vacuum).

Solution: We know that an x-polarized surface current $f(t)$ produces

$$
E_{x}=-\frac{\eta}{2} f\left(t \mp \frac{z}{v}\right) \quad \text { and } \quad H_{y}=\mp \frac{1}{2} f\left(t \mp \frac{z}{v}\right)
$$

in surrounding regions. Given that $f(t)=2 \cos (\omega t)$, this implies

$$
E_{x}=-\eta \cos (\omega t \mp \beta z) \text { and } H_{y}=\mp \cos (\omega t \mp \beta z)
$$

where

$$
\beta=\frac{\omega}{c} \text { and } \eta=\eta_{o} \approx 120 \pi \Omega
$$

since the current sheet is surrounded by vacuum. Converting these into phasors, we find

$$
\tilde{\mathbf{E}}^{ \pm}=-\eta e^{\mp j \beta z} \hat{x} \text { and } \tilde{\mathbf{H}}^{ \pm}=\mp e^{\mp j \beta z} \hat{y}
$$

- In the last lecture we calculated the time-average $\mathbf{E} \times \mathbf{H}$ and $\mathbf{J}_{s} \cdot \mathbf{E}$ of the fields examined in Example 3 using a time-domain approach. The same calculations can be carried out in terms of phasors $\tilde{\mathbf{E}}, \tilde{\mathbf{H}}$, and $\tilde{\mathbf{J}}_{s}$ as follows:

$$
\langle\mathbf{E} \times \mathbf{H}\rangle=\frac{1}{2} \operatorname{Re}\left\{\tilde{\mathbf{E}} \times \tilde{\mathbf{H}}^{*}\right\} \quad \text { and } \quad\left\langle\mathbf{J}_{s} \cdot \mathbf{E}\right\rangle=\frac{1}{2} \operatorname{Re}\left\{\tilde{\mathbf{J}}_{s} \cdot \tilde{\mathbf{E}}^{*}\right\}
$$

where $\tilde{\mathbf{E}} \times \tilde{\mathbf{H}}^{*} \equiv \tilde{\mathbf{S}}$ is called complex Poynting vector.

- The proof of these are analogous to the proof of

$$
\langle p(t)\rangle=\frac{1}{2} \operatorname{Re}\left\{V I^{*}\right\}
$$

for the average power of a circuit component in terms of voltage and current phasors V and I (see margin).

For, instance, given that

$$
\tilde{\mathbf{J}}_{s}=2 \hat{x} \frac{\mathrm{~A}}{\mathrm{~m}} \text { and } \quad \tilde{\mathbf{E}}^{ \pm}(z)=-\eta e^{\mp j \beta z} \hat{x} \frac{\mathrm{~V}}{\mathrm{~m}}
$$

in Example 3, it follows that

$$
\left\langle-\mathbf{J}_{s}(t) \cdot \mathbf{E}(0, t)\right\rangle=\frac{1}{2} \operatorname{Re}\left\{-\tilde{\mathbf{J}}_{s} \cdot \tilde{\mathbf{E}}^{*}(0)\right\}=\eta \approx 120 \pi \frac{\mathrm{~W}}{\mathrm{~m}^{2}},
$$

in conformity with the result from last lecture.

Instantaneous power

$$
p(t)=v(t) i(t)
$$

with time-harmonic signals is

$$
v(t) i(t)=\left(\frac{V e^{j \omega t}+\mathrm{cc}}{2}\right)\left(\frac{I e^{j \omega t}+\mathrm{cc}}{2}\right)
$$

where V and I are phasors of $v(t)$ and $i(t)$ and cc indicates the conjugate of the term to the left of + sign.
This can be expanded as

$$
v(t) i(t)=\frac{V I^{*}+\mathrm{cc}}{4}+\frac{V I e^{j 2 \omega t}+\mathrm{cc}}{4}
$$

The second term has a zero time average. It follows that time-average power

$$
\langle v(t) i(t)\rangle=\frac{V I^{*}+\mathrm{cc}}{4}=\frac{1}{2} \operatorname{Re}\left\{V I^{*}\right\}
$$

since
$V I^{*}+\mathrm{cc}=V I^{*}+V^{*} I=2 \operatorname{Re}\left\{V I^{*}\right\}$.
(Also see ECE 210 text.)

