21 Monochromatic waves and phasor notation
e Recall that we reached the traveling-wave d’Alembert solutions
z
E7 H f(t + _)
v
via the superposition of time-shifted and amplitude-scaled versions of
f(t) = cos(wt),
namely the monochromatic waves

A cos|w(t F %)] = A cos(wt F [z),

with amplitudes A where

= — = wy/ue

U

can be called wave-number in analogy with wave-frequency w.

— As depicted in the margin, monochromatic solutions A cos(wtF3z)
are periodic in position and time, with the wave-number (3 being
essentially a spatial-frequency, the spatial counterpart of w.

This is an important point that you should try to understand

well — it has implications for signal processing courses related
to images and vision.
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. . . Period
— In general, monochromatic solutions of 1D wave-equations ob- sty L e
. . . . . . ”,'_‘ /\\ 27'(' /\
tained in various branches of science and engineering can all berep- /| fANT=2 /)
resented in the same format as above in terms of wave-frequency | | [
/ wave-wavenumber pairs w and (§ having a ratio o ;
v = B -1+ N4 \/
. . . . . A Cos(ﬁz) Wavelength
recognized as the wave-speed and specific dispersion relations 1+ :Agﬂi
[\ [ ANA==— /| \
such as: VB
1. TEM waves in perfect dielectrics: B
0 = wy/pe, -t N

Dispersion relations
2. Acoustic waves in monoatomic gases with temperature 7' (K) petween

and atomic mass m (kg): wavefrequency w

m and
f=w, /3 ; wavenumber
\ EKT b

determine the

3. TEM waves in collisionless plasmas (ionized gases) with plasma propagation wveloc-
Ne2 1ty

mey

frequency w, =

v=—==\f
B = L W2 — w2 16
c
for all types of
wave motions.



— For any type of wave solution — TEM, acoustic, plasma wave
— once the dispersion relation is available (meaning that it has
been derived from fundamental physical laws governing the specific
wave type), wave propagation velocity is always obtained as

or, equivalently, as

where

and

cos(wt — B2) -0

\/
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e Monochromatic z-polarized waves
-V
E = FE,cos(wt F fz) T —
m

can also be expressed in phasor form as

E=Ee™% 3 X
m

such that
Re{Ee’“'} = E, cos(wt F B2) i = E

in view of Euler’s identity:.

Example 1: Study the following table to understand monochromatic wave
fields and their phasors.

Field Phasor Comment
E = cos(wt + By) 2 E=¢e"3 z-polarized wave propagating in —y direction
H = —ej;y x magnetic phasor that accompanies E above
H =sin(wt — 32)5 | H= —je 7%y wave propagating in +z direction
E=—jne %z electric field phasor of H above
E = psin(wt — B2) z which is an z-polarized field (see the right column)




Example 2: Given that
H = 2H" cos(wt — 32) + gH ™ sin(wt + (32)

representing the sum of wave fields propagating in opposite directions, the corre-
sponding phasor

H=3iH"e 7% — jyH /%
The corresponding E-field phasor is
E = —gnH e % 4 jinH ™,
from which
E = —gnH" cos(wt — $2) — 2nH ™ sin(wt + [2).
Make sure to check that all the signs make sense, and if you think you have

caught an error, let us know.

e In general, we transform between plane TEM wave phasors E and H
as follows:

1. To obtain H from E: divide E by n and rotate the vector direction
so that vector S = E x H* points in the propagation direction of the
wave — more on complex vector S later on.

2. To obtain E from H: multiply H by n and rotate the vector direction
so that vector S = E x H* points in the propagation direction of the

6



wave.

Example 3: On z = 0 plane we have a monochromatic surface current specified as

A .
J, = 2f(t) = 22 cos(wt) — = Re{22 '}
m

Determine wave field phasors E* and H* for plane TEM waves propagating away
from the z = 0 surface on both sides (assumed vacuum).

Solution: We know that an z-polarized surface current f(¢) produces

_ z _ 1 z
£, = 2f(t:Fv) and Hy_:FQf(t:Fv)

in surrounding regions. Given that f(t) = 2 cos(wt), this implies
E, = —ncos(wt F Bz) and H, = F cos(wt F Bz)

where w
ﬁ:— and 77:770%12071'(2
C

since the current sheet is surrounded by vacuum. Converting these into phasors,
we find

E* = —ne®%; and HT = Fe¥77%.




In the last lecture we calculated the time-average EE x H and J, - E of
the fields examined in Example 3 using a time-domain approach. The
same calculations can be carried out in terms of phasors E, I:I7 and J,
as follows:

1 ~ 1 ..
(E x H) = §Re{E x H*} and (J,-E) = §Re{Js -E*}

where E x H* = S is called complex Poynting vector.

— The proof of these are analogous to the proof of

with time-harmonic signals is

1 *
(p(1)) = GRe{VI"} ot
w(Di(t) = () (e

for the average power of a circuit component in terms of voltage and current

phasors V and I (see margin). where V and I are phasors of v(t) and
i(t) and cc indicates the conjugate of
the term to the left of 4 sign.

For, instance, given that This can be expanded as
VI* +cc  VIel?®t 4 cc
- A - : V o(b)i(t) = + :
J,=2t— and E*(z)=—ne¥Ps — ! !
m m

The second term has a zero time aver-
age. It follows that time-average power

in Example 3, it follows that

(=Js(t)-E(0,1)) = %Re{—js "E*(0)} =n ~ 120n %

in conformity with the result from last lecture.

weyi) = 2L *4+ c_ %Re{VI*}

since

VI* +cc=VI*+V*I = 2Re{VI*}.

(Also see ECE 210 text.)



