22 Phasor form of Maxwell’s equations and damped
waves in conducting media

e When the fields and the sources in Maxwell’s equations are all monochro-
matic functions of time expressed in terms of their phasors, Maxwell’s

equations can be transformed into the phasor domain. V-D =p
V:-B =0
— In the phasor domain all VxE = _8_B
ot
0 . oD
and all variables D, p, etc. are replaced by their phasors D, 0,
and so on. With those changes Maxwell’s equations take the form
shown in the margin.
— Also in these equations it is implied that = .
quations it is impli v . I} ~ 5
D = ¢E V-B 0
B = uH VxE = —juB
J = oE VxH = J+jwD

where €, 1, and o could be a function of frequency w (as, strictly
speaking, they all are as seen in Lecture 11).

— We can derive from the phasor form Maxwell’s equations shown
in the margin the TEM wave properties obtained earlier on using
the time-domain equations by assuming p = J = 0.

1



We will do that, and and after that relax the requirement J = 0 with
J = oE to examine how TEM waves propagate in conducting media.

o With p = J = 0 the phasor form Maxwell’s equation take their simpli-
fied forms shown in the margin.

— Using V ]? =0
. L - ' 5 V-H=20
Vx|VXE=—jwH = —-VE=—jwuV xH VxE = —joull
which combines with the Ampere’s law to produce VxH = jweE

V2E + w?pueE = 0.

— For z-polarized waves with phasors

E = 1F,(2),

the phasor wave equation above simplifies as
82
5 bt w 21eF, = 0.

— Try solutions of the form

E.(z)=e " ore”

where 7y is to be determined.



— Upon substitution into wave equation both of these lead to
(72 + w?ue)E, = 0,
which yields
V+wiue=0 = = —wue
from which one possibility is

v=30, with B =w,/ue.

Thus viable phasor solutions are

~

E.(z) = eTI02

as we already knew.

— Furthermore, using the phasor form Faraday’s law it is easy to

show that y
FijBz
‘ with 7 = y
n W

H,=+
Note that we have recovered above the familiar properties of

plane TEM waves using phasor methods.

Next, the phasor method carries us to a new domain that cannot be
easily examined using time-domain methods.



e With g = 0 but J = oE # 0, implying non-zero conductivity o, the
pertinent phasor form equations are as shown in the margin.

— This is the same set as before, except that V- ]NE =0
. . V-H 0
jwe has been replaced by o + jwe. VxE = —juuH
Thus, we can make use of phasor wave solutions above after ap- V X H = oK + jweE
plying the following modifications to v and 7: = (0 + jwe)E
1.
7" = e = (up)(we) | 717 = V(jwi)(o + jwe)
2.
y = p_ jwp | == n = JW
€ jwe | 0 #0 o+ jwe
Note that the modified v and n satisty
fyn:jw,uandz:aJrjwe M:ﬁ
n Jw
. . . . . o = Re{l}
leading to useful relations shown in the margin (assuming real n
valued o and €). 1
) € = —Im{z}
w U]



In terms of v and n above, we can express an z-polarized plane wave

propagating in z direction in terms of phasors

. . E,
E=2FE,e™ and H= +y—

U

GZFVZ

where F, is an arbitrary complex constant (complex wave amplitude).

In expanded forms v and n appear as:

v =/ (jwu)(o + jwe) = a+j8, sothat a =Re{y} and 8 =Im{y}, \;h‘ Jane

and

Jwit

— = |pn|e’” so that |n| =
" Inle’” so that [n| = |

and 7=/

In the special case of a perfect dielectric with ¢ = 0, we find

and, therefore,

: . ]
v = Jjwy/pe =B and n =4 /-,
N , N QEOe]FJﬂZ
E=3Fe"" and H=+2"2
n

as before. In this case « = 7 = 0.

Jwp

(a) Damped wave snapshot at t=0
together with exponential envelope
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(b) Snaphot at t>0, with t=0 waveform
for comparison
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— [3 appears within cosine
argument and deter-
mines the wavelength

i
g
and propagation speed
v =2
p — 5

— « controls wave attenu-
ation by

€¥az

factor in propagation

direction.



2. Another case of imperfect dielectric (or “lousy” conductor) occurs
when o is not zero, but it is so small that are justified in using

(1+a) ~1+pa, if |a| <1,

with p = 5 as follows: For = <1,

o ln .
v = (jwp)(o + jwe) = jwy/pe(1— ]—)1/2 ~ jwy/pie(1 J—) = §\£+Jw\/u6;
hence
E ~ 1 E,e™ 9% with o = g\/E and 3 = w\/ue;
€

also in the same case

. VB eFlatif)z .
n e(l—j=) € 2we €

ynyg\/g and 7= /n~
€ 2we

Note: v and 1 both are complexr valued, the consequences of which

such that

will be examined later on.

3. A third case of good conductor corresponds to = > 1. In that case,

. .0 . O N JWHO W W i
V_JW\/MG(l—]—) Rwy [ JH— = (1+])\/L and n e [E = \/“u SV
WE W 2 —Jo o o




(a) Damped wave snapshot at t=0

Hence,

&%ﬂ%q/#:\/wﬂw while \n\:@/wa—'u and 7= /Zn = 45°.

. Finally, perfect conductor case corresponds to ¢ — oo, in which case

\\‘
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E, — 0 as we will show later on. Wave fields cannot exist in perfect
conductors.

(b) Snaphot at t>0, with t=0 waveform

together with exponential envelope
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for comparison
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Summarizing, in a homogeneous medium with arbitrary but con-
stant u, €, and o, time-harmonic plane TEM waves are in terms of

E = iRe{E,eT@tzeot) — 4

E,|e™ cos(wt F Bz + LE,)

\V/

and accompanying magnetic fields

E, N E, ¢
H = +gRe{=2eTl@tifzeivty — :|:Q|—|‘e¢0‘z cos(wt F Bz + LE, — £n).
U] n
Propagation velocity
W W
Up = — = = = y
B Im{y/(jup)(o + jwe)}
now depends on frequency w and it describes the speed of the nodes o

(zero-crossings, not modified by the attenuation factor) of the field
waveform. Subscript p is introduced to distinguish v, — also called
phase velocity — from group velocity v, discussed in ECE 450 (velocity
of narrowband wave packets).
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(a) Damped wave snapshot at t=0

e Wavelength """ together with exponential envelope
A= 2T \ T
57
oW depends ol frequency f via both the numerator and the denomi- J/ 5
nator, and measures twice the distance between successive nodes of the | \/

waveform em cos(wt — B2) g

e Penetration depth (also called skin depth if very small)

(b) Snaphot at t>0, with t=0 waveform
for comparison

5= I 1 T
o Rely/Gero + Jwel} L 7
is the distance for the field strength to be reduced by e~! factor in its | _ BN
direction of propagation. | e cos(wt — 2)

— For a fixed o, and a sufficiently large w, the penetration depth
— [3 appears within cosine

2 ar
~ . . gument and deter-
o~ T Imperfect dielectric formula mines the wavelength
‘ 2
. . . . . 7T
which can be very small if o is large — with small 6 the wave is Ay
severely attenuated as it propagates. and propagation speed
— For a fixed o, and a sufficiently small w, B
2 1 -7
HWO V 7Tf,LLO' ation by
which, although small with large o, increases as w decreases, mak- JFaz
ing low frequencies to be preferable in applications requiring prop-
agating through lossy media with large o, such as in sea-water. factor in propagation
direction.
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