
22 Phasor form of Maxwell’s equations and damped
waves in conducting media

• When the fields and the sources in Maxwell’s equations are all monochro-

∇ · D = ρ

∇ · B = 0

∇× E = −∂B

∂t

∇× H = J +
∂D

∂t
.

matic functions of time expressed in terms of their phasors, Maxwell’s
equations can be transformed into the phasor domain.

– In the phasor domain all

∂

∂t
→ jω

and all variables D, ρ, etc. are replaced by their phasors D̃, ρ̃,
and so on. With those changes Maxwell’s equations take the form
shown in the margin.

∇ · D̃ = ρ̃

∇ · B̃ = 0

∇× Ẽ = −jωB̃

∇× H̃ = J̃ + jωD̃

– Also in these equations it is implied that

D̃ = εẼ

B̃ = µH̃

J̃ = σẼ

where ε, µ, and σ could be a function of frequency ω (as, strictly
speaking, they all are as seen in Lecture 11).

– We can derive from the phasor form Maxwell’s equations shown
in the margin the TEM wave properties obtained earlier on using
the time-domain equations by assuming ρ̃ = J̃ = 0.
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We will do that, and and after that relax the requirement J̃ = 0 with
J̃ = σẼ to examine how TEM waves propagate in conducting media.

• With ρ̃ = J̃ = 0 the phasor form Maxwell’s equation take their simpli-
fied forms shown in the margin.

∇ · Ẽ = 0

∇ · H̃ = 0

∇× Ẽ = −jωµH̃

∇× H̃ = jωεẼ

– Using

∇× [∇× Ẽ = −jωµH̃] ⇒ −∇2Ẽ = −jωµ∇× H̃

which combines with the Ampere’s law to produce

∇2Ẽ + ω2µεẼ = 0.

– For x-polarized waves with phasors

Ẽ = x̂Ẽx(z),

the phasor wave equation above simplifies as

∂2

∂z2
Ẽx + ω2µεẼx = 0.

– Try solutions of the form

Ẽx(z) = e−γz or eγz

where γ is to be determined.
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– Upon substitution into wave equation both of these lead to

(γ2 + ω2µε)Ẽx = 0,

which yields

γ2 + ω2µε = 0 ⇒ γ2 = −ω2µε

from which one possibility is

γ = jβ, with β ≡ ω
√

µε.

Thus viable phasor solutions are

Ẽx(z) = e∓jβz

as we already knew.
– Furthermore, using the phasor form Faraday’s law it is easy to

show that
H̃y = ±e∓jβz

η
with η =

√
µ

ω
.

Note that we have recovered above the familiar properties of
plane TEM waves using phasor methods.

Next, the phasor method carries us to a new domain that cannot be
easily examined using time-domain methods.
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• With ρ̃ = 0 but J̃ = σẼ )= 0, implying non-zero conductivity σ, the
pertinent phasor form equations are as shown in the margin.

∇ · Ẽ = 0

∇ · H̃ = 0

∇× Ẽ = −jωµH̃

∇× H̃ = σẼ + jωεẼ

= (σ + jωε)Ẽ

– This is the same set as before, except that

jωε has been replaced by σ + jωε.

Thus, we can make use of phasor wave solutions above after ap-
plying the following modifications to γ and η:

1.

γ2 = −ω2µε = (jωµ)(jωε)
⇒⇒
σ )= 0

γ =
√

(jωµ)(σ + jωε)

2.

η =

√
µ

ε
=

√
jωµ

jωε
⇒⇒
σ )= 0

η =

√
jωµ

σ + jωε
.

Note that the modified γ and η satisfy

µ =
γη

jω

σ = Re{γ

η
}

ε =
1

ω
Im{γ

η
}

γη = jωµ and
γ

η
= σ + jωε

leading to useful relations shown in the margin (assuming real
valued σ and ε).

4



• In terms of γ and η above, we can express an x-polarized plane wave
propagating in z direction in terms of phasors e−αz

e−αz cos(ωt − βz)|t=0

z

z

e−αz cos(ωt − βz)

(a) Damped wave snapshot at t=0
    together with exponential envelope

(b) Snaphot at t>0, with t=0 waveform
    for comparison

– β appears within cosine
argument and deter-
mines the wavelength

λ =
2π

β

and propagation speed

vp =
ω

β
.

– α controls wave attenu-
ation by

e∓αz

factor in propagation

direction.

Ẽ = x̂Eoe
∓γz and H̃ = ±ŷ

Eo

η
e∓γz

where Eo is an arbitrary complex constant (complex wave amplitude).

• In expanded forms γ and η appear as:

γ =
√

(jωµ)(σ + jωε) ≡ α+jβ, so that α = Re{γ} and β = Im{γ},

and

η =

√
jωµ

σ + jωε
≡ |η|ejτ so that |η| = |

√
jωµ

σ + jωε
| and τ = ∠

√
jωµ

σ + jωε
.

1. In the special case of a perfect dielectric with σ = 0, we find

γ = jω
√

µε ≡ jβ and η =

√
µ

ε
,

and, therefore,

Ẽ = x̂Eoe
∓jβz and H̃ = ± ŷEoe∓jβz

η

as before. In this case α = τ = 0.
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2. Another case of imperfect dielectric (or “lousy” conductor) occurs
when σ is not zero, but it is so small that are justified in using

(1 ± a)p ≈ 1 ± pa, if |a| + 1,

with p = 1
2 as follows: For σ

ωε + 1,

γ =
√

(jωµ)(σ + jωε) = jω
√

µε(1−j
σ

ωε
)1/2 ≈ jω

√
µε(1−j

σ

2ωε
) =

σ

2

√
µ

ε
+jω

√
µε;

hence

Ẽ ≈ x̂Eoe
∓(α+jβ)z with α =

σ

2

√
µ

ε
and β = ω

√
µε;

also in the same case

H̃ ≈ ± ŷEoe∓(α+jβ)z

η
with η =

√
µ

ε(1 − j σ
ωε)

≈
√

µ

ε
(1+j

σ

2ωε
) ≈

√
µ

ε
ej tan−1 σ

2ωε ,

such that
|η| ≈

√
µ

ε
and τ = ∠η ≈ σ

2ωε
.

Note: γ and η both are complex valued, the consequences of which
will be examined later on.

3. A third case of good conductor corresponds to σ
ωε , 1. In that case,

γ = jω

√
µε(1 − j

σ

ωε
) ≈ ω

√
jµ

σ

ω
= (1+j)

√
ωµσ

2
and η ≈

√
µ

−j σ
ω

=

√
jωµ

σ
=

√
ωµ

σ
ejπ/4.
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Hence,

α ≈ β ≈
√

ωµσ

2
=

√
πfµσ while |η| =

√
ωµ

σ
and τ = ∠η = 45o.

4. Finally, perfect conductor case corresponds to σ → ∞, in which case
Ẽx → 0 as we will show later on. Wave fields cannot exist in perfect
conductors.

e−αz

e−αz cos(ωt − βz)|t=0

z

z

e−αz cos(ωt − βz)

(a) Damped wave snapshot at t=0
    together with exponential envelope

(b) Snaphot at t>0, with t=0 waveform
    for comparison

• β appears within cosine
argument and deter-
mines the wavelength

λ =
2π

β

and propagation speed

vp =
ω

β
.

• α controls wave attenu-
ation by

e∓αz

factor in propagation

direction.

• Summarizing, in a homogeneous medium with arbitrary but con-
stant µ, ε, and σ, time-harmonic plane TEM waves are in terms of

E = x̂Re{Eoe
∓(α+jβ)zejωt} = x̂|Eo|e∓αz cos(ωt ∓ βz + ∠Eo)

and accompanying magnetic fields

H = ±ŷRe{Eo

η
e∓(α+jβ)zejωt} = ±ŷ

|Eo|
|η| e∓αz cos(ωt∓ βz + ∠Eo −∠η).

• Propagation velocity

vp =
ω

β
=

ω

Im{
√

(jωµ)(σ + jωε)}
,

now depends on frequency ω and it describes the speed of the nodes
(zero-crossings, not modified by the attenuation factor) of the field
waveform. Subscript p is introduced to distinguish vp — also called
phase velocity — from group velocity vg discussed in ECE 450 (velocity
of narrowband wave packets).
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• Wavelength
λ =

2π

β
=

vp

f
now depends on frequency f via both the numerator and the denomi-
nator, and measures twice the distance between successive nodes of the
waveform.

e−αz

e−αz cos(ωt − βz)|t=0

z

z

e−αz cos(ωt − βz)

(a) Damped wave snapshot at t=0
    together with exponential envelope

(b) Snaphot at t>0, with t=0 waveform
    for comparison

– β appears within cosine
argument and deter-
mines the wavelength

λ =
2π

β

and propagation speed

vp =
ω

β
.

– α controls wave attenu-
ation by

e∓αz

factor in propagation

direction.

• Penetration depth (also called skin depth if very small)

δ ≡ 1

α
=

1

Re{
√

(jωµ)(σ + jωε)}
is the distance for the field strength to be reduced by e−1 factor in its
direction of propagation.

– For a fixed σ, and a sufficiently large ω, the penetration depth

δ ≈ 2

σ
√µ

ε

Imperfect dielectric formula

which can be very small if σ is large — with small δ the wave is
severely attenuated as it propagates.

– For a fixed σ, and a sufficiently small ω,

δ ≈
√

2

µωσ
=

1√
πfµσ

Good conductor "skin depth" formula

which, although small with large σ, increases as ω decreases, mak-
ing low frequencies to be preferable in applications requiring prop-
agating through lossy media with large σ, such as in sea-water.
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