
28 Distributed circuits and bounce diagrams
Last lecture we learned that voltage and current variations on TL’s are gov-
erned by telegrapher’s equations and their d’Alembert solutions — the latter
can be expressed as

V (z, t) = f(t− z

v
) + g(t +

z

v
)

and
I(z, t) =

f(t− z
v)

Zo
−

g(t + z
v)

Zo

in terms of

v =
1√
LC

and Zo =

√
L
C

and functions f(t) and g(t) corresponding to signal waveforms propagated in
+z and −z directions, respectively.
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• In this lecture we will learn how to solve distributed circuit prob-
lems containing TL segments and two terminal elements such as resis-
tors and voltage (or current) sources. In solving the problems, we will
apply the usual rules of lumped circuit analysis at element terminals
and treat the TL’s in terms of d’Alembert solutions above.
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• Consider a TL with a characteristic impedance Zo extending from z = 0
to z = l, where a two-terminal source circuit (e.g., a receiving antenna)
modeled by a Thevenin equivalent with voltage fi(t) and resistance
Rg is connected between the TL terminals at z = 0 and a load (e.g.,
a receiver circuit) modeled by a resistance RL terminates the line at
z = l (see margin).
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– We want to determine voltage and current signals V (z, t) and
I(z, t) on the TL and the load in terms of source signal fi(t).

• Let us first consider the case when

V (!, t)

I(!, t)
=

VL

IL
= RL = Zo.

In that case

V (!, t)

I(!, t)
=

f(t− !
v) + g(t + !

v)
f(t− !

v )
Zo

− f(t− !
v )

Zo

= Zo
f(t− !

v) + g(t + !
v)

f(t− !
v)− g(t + !

v)
= Zo =

VL

IL
,

which is only possible if g(t + !
v) = 0 for all t.

– Hence

V (z, t) = f(t− z

v
) and I(z, t) =

1

Zo
f(t− z

v
)

in this simplified circuit with RL = Zo.
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– Now, for z = 0,

V (0, t) = f(t) and I(0, t) =
1

Zo
f(t)

and since
I(0, t) =

fi(t)− V (0, t)

Rg
,

it follows that
f(t) =

Zo

Rg + Zo
fi(t).

– We recognize this result as “voltage division” of the source volt-
age fi(t) across the transmission line terminals having an effective
“input resistance” of Zo. We will also write this result as

f(t) = τgfi(t) with τg =
Zo

Rg + Zo
called an injection coefficient.

• In summary, in the circuit examined above having a “matched load”
(see margin)
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V (z, t) = τgfi(t−
z

v
) and I(z, t) =

τg
Zo

fi(t−
z

v
).

– These apply with any input function fi(t).

• It is useful to consider the case fi(t) = δ(t), and refer to the corre-
sponding voltage solution

V (z, t) = τgδ(t−
z

v
) ≡ hz(t)
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as an impulse response, extending an important concept we learned
about in ECE 210.

– Knowing an impulse response hz(t) is useful since convolving it
with any fi(t) gives us the system response to input fi(t) .

Clearly, we need the ckt impulse response for an arbitrary RL.

• In our circuit with an arbitrary RL and an impulse input (see margin),
our earlier solutions
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V (z, t) = τgδ(t−
z

v
) and I(z, t) =

τg
Zo

δ(t− z

v
)

will be inadequate to satisfy the constraint
V (!, t)

I(!, t)
= RL =

VL

IL

at all times t. However, it can be easily verified that d’Alembert series
solutions of the form

V (z, t) = τg[δ(t−
z

v
) + ΓLδ(t +

z

v
− 2!

v
) + · · ·]

and
I(z, t) =

τg
Zo

[δ(t− z

v
)− ΓLδ(t +

z

v
− 2!

v
) + · · ·],

can be fitted to the required boundary conditions at both ends if

ΓL =
RL − Zo

RL + Zo
.
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– In these series, the second terms represent the “reflected” counter-
parts of the first terms where ΓL is a reflection coefficient, and

– We assume that other terms not explicitly shown (i.e., + · · ·’s in
the series) vanish for t < 2!

v (and play a role at later times).

Verification: In the time interval 0 < t < 2!
v , the assumed series

expressions evaluate, at z = !, to

V (!, t) = τg[δ(t−
!

v
) + ΓLδ(t +

!

v
− 2!

v
)] = τgδ(t−

!

v
)[1 + ΓL]

and

I(!, t) =
τg
Zo

[δ(t− !

v
)− ΓLδ(t +

!

v
− 2!

v
)] =

τg
Zo

δ(t− !

v
)[1− ΓL],

respectively. Applying the boundary constraint for z = ! with these,
we find

RL =
VL

IL
=

V (!, t)

I(!, t)
= Zo

1 + ΓL

1− ΓL
,

from which it follows that

ΓL =
RL − Zo

RL + Zo

as claimed.

This effectively verifies the assumed series solutions above for the time inter-
val 0 < t < 2!

v — re-confirming that the boundary condition at z = 0 is also
met is left as an optional exercise.
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• The solution obtained above (for t < 2!
v ) can be better appreciated and

extended to all times with the help of so-called bounce diagrams —
see margin.

+-

+

-

0

δ(t)

Rg I(z, t)

V (z, t)

zl

Zo

I(z, t)
RL

+

-

IL

VL

3l
v

τgΓ3
LΓ2

g

z
l

t

τg

τgΓL

τgΓLΓg

τgΓ2
LΓg

τgΓ2
LΓ2

g

2l
v

4l
v

l

v

Bounce diagram
– A bounce diagram is a plot of the “trajectories” of traveling im-

pulses found on transmission line segments excited by impulse in-
puts.

– The horizontal axis represents position z of the traveling impulses
while time t is represented by a downward pointing axis.

– The first slanted line on the top of the diagram, representing the
traveling impulse

τgδ(t−
z

!
),

(first term of hz(t) = V (z, t)) is “reflected” at time t = !
v from load

RL to turn into a backward propagating impulse

τgΓLδ(t +
z

v
− 2!

v
)

represented by the second line of the diagram.
– The backward propagating impulse reaches z = 0 at t = 2!

v and is
reflected once more with a reflection coefficient

Γg =
Rg − Zo

Rg + Zo

to become a forward propagating impulse

τgΓLΓgδ(t−
z

v
− 2!

v
)
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represented by the third line of the diagram.

◦ Reflection at Rg is in effect the same physical process as re-
flection at RL and therefore its coefficient Γg is identical with
ΓL except for the replacement of RL by Rg.

– The bounce diagram is advanced in time with further reflections
occurring at both ends.
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Bounce diagram– We show the calculated weights of traveling impulses directly on
the diagram just above the slanted lines representing the trajec-
tories of each traveling impulse (each having a lifetime of !/v)

• Using the bounce diagram, the full expressions for the voltage and
current impulse response functions of the circuit can be written as

V (z, t) = τg

∞∑

n=0

(ΓLΓg)
nδ(t− z

v
− n

2!

v
)

+τgΓL

∞∑

n=0

(ΓLΓg)
nδ(t+

z

v
− (n+ 1)

2!

v
)

and

I(z, t) = τg
Zo

∞∑

n=0

(ΓLΓg)
nδ(t− z

v
− n

2!

v
)

− τg
Zo

ΓL

∞∑

n=0

(ΓLΓg)
nδ(t+

z

v
− (n+ 1)

2!

v
).
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• Although these series formulae1 look daunting, only the lower order
terms usually matter — that is true because |ΓL| ≤ 1 and |Γg| ≤ 1 and
thus (ΓLΓg)n is typically a rapidly diminishing function of n (unless
the ckt is “dissipation free” and resonant, a concept explored in Lecture
31).
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Bounce diagram• We typically rely on the bounce diagram technique more so than the
series expressions developed above. This will be illustrated by several
examples in the next lecture.

– The main idea is to combine delayed versions of the circuit input
fi(t) with the impulse weights indicated on the bounce diagram,
since, in general, the convolution δ(t− Tz) ∗ fi(t) = fi(t− Tz) for
any z-dependent delay such as z

v ,
z
v −

2!
v , etc...

1The first term of V (z, t) in the series formula can also be obtained from the formal solution of the
equation

f(t) = τgδ(t) + ΓLΓgf(t−
2!

v
)

which, in turn, is obtained from

I(0, t) =
δ(t)− V (0, t)

Rg
and I(!, t) =

V (!, t)

RL

enforced at z = 0 and z = ! at all times t. The second term in V (z, t) comes from the requirement that

g(t) = ΓLf(t+
2!

v
),

which is a consequence of the boundary condition at z = !. We have effectively by-passed such a formal
derivation by using the bounce diagram technique.
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