29 Bounce diagram examples

Example 1: A transmission line of length $\ell=900 \mathrm{~m}$ and speed $v=c$ has $R_{L}=2 Z_{o}$. It is excited by a generator having an open circuit voltage $f_{i}(t)=\sin (\omega t) u(t)$ and Thevenin resistance $R_{g}=Z_{o}$. The source frequency is $\frac{\omega}{2 \pi}=1 \mathrm{MHz}$. Determine the voltage response $V(z, t)$ in the circuit after first determining the impulse response function $h_{z}(t)$.

Solution: In the circuit, the injection coefficient is

$$
\tau_{g}=\frac{Z_{o}}{R_{g}+Z_{o}}=\frac{Z_{o}}{Z_{o}+Z_{o}}=\frac{1}{2} .
$$

The load and generator reflection coefficients are

$$
\Gamma_{L}=\frac{R_{L}-Z_{o}}{R_{L}+Z_{o}}=\frac{2 Z_{o}-Z_{o}}{2 Z_{o}+Z_{o}}=\frac{2-1}{2+1}=\frac{1}{3} \text { and } \Gamma_{g}=\frac{R_{g}-Z_{o}}{R_{g}+Z_{o}}=\frac{Z_{o}-Z_{o}}{Z_{o}+Z_{o}}=0
$$

respectively. Also, time-delay

$$
\frac{2 \ell}{v}=\frac{2 \cdot 900 \mathrm{~m}}{300 \mathrm{~m} / \mu \mathrm{s}}=6 \mu \mathrm{~s}
$$

The corresponding bounce diagram is shown in the margin. Note that the diagram terminates at $t=\frac{2 \ell}{v}$ because Z_{o} is matched to R_{g} and $\Gamma_{g}=0$. From the diagram we deduce the impulse response

$$
h_{z}(t)=\frac{1}{2} \delta\left(t-\frac{z}{c}\right)+\frac{1}{6} \delta\left(t+\frac{z}{v}-6 \mu\right) .
$$

Convolving $h_{z}(t)$ with $\sin (\omega t) u(t)$, we obtain the voltage response of the TL to the sinusoidal input as (see plots in the margin)

$$
V(z, t)=h_{z}(t) * \sin (\omega t) u(t)=\frac{1}{2} \sin \omega\left(t-\frac{z}{v}\right) u\left(t-\frac{z}{v}\right)+\frac{1}{6} \sin \omega\left(t+\frac{z}{v}-6\right) u\left(t+\frac{z}{v}-6\right) .
$$

For $t=1 \mu \mathrm{~s}:$
For $t=2 \mu \mathrm{~s}$:

See an animated version of this and another where
$\Gamma_{L}=-1$
linked in the class calendar.

Example 2: Consider a TL circuit where $Z_{o}=50 \Omega, v=c, \ell=2400 \mathrm{~m}, R_{g}=0$, and $R_{L}=100 \Omega$. Determine and plot $V(1200, t)$ if $f_{i}(t)=u(t)$.

Solution: For this circuit

$$
\tau_{g}=\frac{Z_{o}}{R_{g}+Z_{o}}=1, \quad \Gamma_{g}=\frac{R_{g}-Z_{o}}{R_{g}+Z_{o}}=-1, \quad \text { and } \Gamma_{L}=\frac{R_{L}-Z_{o}}{R_{L}+Z_{o}}=\frac{1}{3} .
$$

Also, the transit time across the TL is

$$
\frac{\ell}{v}=\frac{2400 \mathrm{~m}}{300 \times 10^{6} \mathrm{~m} / \mathrm{s}}=8 \mu \mathrm{~s}
$$

From the bounce diagram shown in the margin, the impulse response for $z=1200$ m (the location marked by the vertical dashed line) is found to be
$V(1200, t)=\delta(t-4)+\frac{1}{3} \delta(t-12)-\frac{1}{3} \delta(t-20)-\frac{1}{9} \delta(t-28)+\frac{1}{9} \delta(t-36)+\cdots$
Replacing the $\delta(t)$ in this expression with the unit-step $u(t)$, the specified input signal $f_{i}(t)$, we get
$V(1200, t)=u(t-4)+\frac{1}{3} u(t-12)-\frac{1}{3} u(t-20)-\frac{1}{9} u(t-28)+\frac{1}{9} u(t-36)+\cdots$
which is plotted in the margin.

Animated version of this is
linked in the class calendar.

- Note that as $t \rightarrow \infty, V(1200, t) \rightarrow 1 \mathrm{~V}$ in Example 1 , as if DC conditions prevail and the TL becomes a pair of wires in the lumped circuit sense.
- DC steady-state corresponds to $\omega=0$ and signal wavelength $\lambda \rightarrow$ ∞. In that limit $\ell \ll \lambda$ is always valid and TL can be treated like an ordinary lumped circuit.
- Of course this simplification can only occur with $f_{i}(t)=u(t)$, or its
 delayed/scaled versions, which are all asymptotically DC in $t \rightarrow$ ∞ limit. The simplification does not apply for $f_{i}(t)=\sin (\omega t) u(t)$, for example.

Example 3: In the TL circuit described in Example 2, determine $V(z, t)$ and $I(z, t)$ for a new input signal $f_{i}(t)=\operatorname{rect}\left(\frac{t}{T}\right)+2 \operatorname{rect}\left(\frac{t-T}{T}\right), T=1 \mu \mathrm{~s}$. Plot $V(z, t)$ versus z at $t=3 \mu s$ and $t=11 \mu s$.

Solution: With $\tau_{g}=1, \Gamma_{g}=-1, \Gamma_{L}=\frac{1}{3}$, and $\frac{2 l}{c}=16 \mu \mathrm{~s}$, we obtain, by convolving with the general impulse response, the voltage response

$$
V(z, t)=\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} f_{i}\left(t-\frac{z}{c}-n 16\right)+\frac{1}{3} \sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} f_{i}\left(t+\frac{z}{c}-(n+1) 16\right)
$$

where $\frac{z}{c}$ is to be entered in μs units. Also,

$$
I(z, t)=\frac{1}{50} \sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} f_{i}\left(t-\frac{z}{c}-n 16\right)-\frac{1}{50} \frac{1}{3} \sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} f_{i}\left(t+\frac{z}{c}-(n+1) 16\right) .
$$

At $t=3 \mu s$, the voltage variation is

$$
V(z, 3)=\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} f_{i}\left(3-\frac{z}{c}-n 16\right)+\frac{1}{3} \sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} f_{i}\left(3+\frac{z}{c}-(n+1) 16\right),
$$

which is plotted in the margin using $f_{i}(t)=\operatorname{rect}(t)+2 \operatorname{rect}(t-1)$. Likewise, at $t=11 \mu s$,

$$
V(z, 11)=\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} f_{i}\left(11-\frac{z}{c}-n 16\right)+\frac{1}{3} \sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} f_{i}\left(11+\frac{z}{c}-(n+1) 16\right) .
$$

Animated version of this is
linked in the class calendar.

