## 30 Multi-line circuits

- In this lecture we will extend the bounce diagram technique to solve distributed circuit problems involving multiple transmission lines.
- One example of such a circuit is shown in the margin where two distinct TL's of equal lengths have been joined directly at a distance $\frac{l}{2}$ away from the generator.
- The impulse response of the system can be found by first constructing the bounce diagram for the TL system as shown in the margin.

- In this bounce diagram, $z=\frac{l}{2}$ happens to be the location of additional reflections as well as transmissions because of the sudden change of $Z_{o}$ from $Z_{1}$ to $Z_{2}=2 Z_{2}$.

These reflections and transmissions between line $j$ and $k$ - transmission from $j$ to $k$, and reflection from $k$ back to $j$ - can be computed with reflection coefficient

$$
\Gamma_{j k}=\frac{Z_{k}-Z_{j}}{Z_{k}+Z_{j}}
$$

and transmission coefficient

$$
\tau_{j k}=1+\Gamma_{j k}
$$

that ensure the voltage and current continuity at the junction
$-Z_{j}$ is the characteristic impedance of the line of the incident pulse, while

- $Z_{k}$ is the impedance of the cascaded line into which the transmitted pulse is injected.


## Verification:

- Let

$$
V_{j}^{+}\left(1+\Gamma_{j k}\right) \text { and } V_{j}^{+}\left(1-\Gamma_{j k}\right) / Z_{j}
$$

denote the total voltage and current on line $Z_{j}$ expressed in terms of incident voltage wave $V^{+}$, and



- let

$$
V_{j}^{+} \tau_{j k} \text { and } V_{j}^{+} \tau_{j k} / Z_{k}
$$

the voltage and current on line $Z_{k}$.
This notation identifies $\Gamma_{j k}$ and $\tau_{j k}$ as reflection and transmission coefficients at the junction.

- Taking

$$
V_{j}^{+}\left(1+\Gamma_{j k}\right)=V_{j}^{+} \tau_{j k}
$$

and

$$
V_{j}^{+}\left(1-\Gamma_{j k}\right) / Z_{j}=V_{j}^{+} \tau_{j k} / Z_{k}
$$

in order to enforce voltage and current continuity, we can solve for $\Gamma_{j k}$ and $\tau_{j k}$ given above.

Example 1: In the circuit shown in the margin with two TL segments, line 2 has twice the characteristic impedance and propagation velocity of line 1, i.e.,

$$
Z_{2}=2 Z_{1} \text { and } v_{2}=2 v_{1} .
$$

Determine $\mathcal{L}_{2}$ and $\mathcal{C}_{2}$ in terms of $\mathcal{L}_{1}$ and $\mathcal{C}_{1}$.
Solution: We have

$$
Z_{2}=2 Z_{1} \Rightarrow \frac{\mathcal{L}_{2}}{\mathcal{C}_{2}}=4 \frac{\mathcal{L}_{1}}{\mathcal{C}_{1}}
$$

and

$$
v_{2}=2 v_{1} \Rightarrow \frac{1}{\mathcal{L}_{2} \mathcal{C}_{2}}=4 \frac{1}{\mathcal{L}_{1} \mathcal{C}_{1}}
$$

The product of the two equations gives

$$
\frac{1}{\mathcal{C}_{2}^{2}}=16 \frac{1}{\mathcal{C}_{1}^{2}} \Rightarrow \mathcal{C}_{2}=\frac{1}{4} \mathcal{C}_{1}
$$

while their ratio leads to

$$
\mathcal{L}_{2}=\mathcal{L}_{1} .
$$

Example 2: In the circuit of Example 1, determine $V(z, t)$ and $I(z, t)$ if

$$
f(t)=\sin (2 \pi t) u(t), \quad t \text { in } \mu s
$$

and $l=2400 \mathrm{~m}, v_{1}=150 \mathrm{~m} / \mu \mathrm{s}$, and $Z_{1}=25 \Omega$.
Solution: From the bounce diagram we infer the following impulse-response for the voltage variable:

$$
V(z, t)=\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{2 n}\left[\delta\left(t-\frac{z}{v_{1}}-n \frac{l}{v_{1}}\right)+\frac{1}{3} \delta\left(t+\frac{z}{v_{1}}-(n+1) \frac{l}{v_{1}}\right)\right]
$$

for $z<\frac{l}{2}$, and

$$
V(z, t)=\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{2 n} \frac{4}{3} \delta\left(t-\frac{z}{v_{2}}-(4 n+1) \frac{l / 2}{v_{2}}\right)
$$

for $\frac{l}{2}<z<l$. The impulse response for the current is

$$
I(z, t)=\frac{1}{3 Z_{1}} \sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{2 n}\left[\delta\left(t-\frac{z}{v_{1}}-n \frac{l}{v_{1}}\right)-\frac{1}{3} \delta\left(t+\frac{z}{v_{1}}-(n+1) \frac{l}{v_{1}}\right)\right]
$$

for $z<\frac{l}{2}$, and

$$
I(z, t)=\frac{1}{3 Z_{2}} \sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{2 n} \frac{4}{3} \delta\left(t-\frac{z}{v_{2}}-(4 n+1) \frac{l / 2}{v_{2}}\right)
$$


for $\frac{l}{2}<z<l$. Using

$$
\frac{l}{v_{1}}=\frac{2400}{150}=16 \mu \mathrm{~s}
$$

and replacing $\delta(t)$ with $f(t)=\sin (2 \pi t) u(t)$ the plot depicted in the margin was obtained.

Example 3: Two TL's with characteristic impedances $Z_{1}$ and $Z_{2}$ are joined at a junction that also includes a "shunt" resistance $R$ as shown in the diagram in the margin. Determine the reflection coefficient $\Gamma_{12}$ and transmission coefficient $\tau_{12}$ at the junction.

Solution: Consider a voltage wave

$$
V^{+}\left(t-\frac{z}{v_{1}}\right)
$$

coming from the left producing reflected and transmitted waves

$$
V^{-}\left(t+\frac{z}{v_{1}}\right) \text { and } V^{++}\left(t-\frac{z}{v_{2}}\right)
$$

on lines 1 and 2 traveling to the left and right, respectively, on two sides of the junction. Using an abbreviated notation, KVL and KCL applied at the junction can be expressed as

$$
V^{+}+V^{-}=V^{++} \text {and } \frac{V^{+}}{Z_{1}}-\frac{V^{-}}{Z_{1}}=\frac{V^{++}}{R}+\frac{V^{++}}{Z_{2}}
$$

where in the KCL equation the first term is the coming down the resistor $R$, and the second term is the TL current on line 2 (as marked in the circuit diagrams in the margin). The equations can be rearranged as

$$
\begin{aligned}
V^{+}+V^{-} & =V^{++} \\
V^{+}-V^{-} & =\frac{Z_{1}}{Z_{e q}} V^{++}
\end{aligned}
$$

where

$$
Z_{e q} \equiv \frac{R Z_{2}}{R+Z_{2}}
$$


is the parallel combination of $R$ and $Z_{2}$. Solving these equations, we find that

$$
\Gamma_{12} \equiv \frac{V^{-}}{V^{+}}=\frac{Z_{e q}-Z_{1}}{Z_{e q}+Z_{1}}
$$

and

$$
\tau_{12}=\frac{V^{++}}{V^{+}}=\frac{2 Z_{e q}}{Z_{e q}+Z_{1}}
$$

By, symmetry, the coefficients

$$
\Gamma_{21}=\frac{Z_{e q}-Z_{2}}{Z_{e q}+Z_{2}}
$$

and

$$
\tau_{21}=\frac{2 Z_{e q}}{Z_{e q}+Z_{2}}
$$

would describe reflection and transmission when a wave is incident from right provided that

$$
Z_{e q} \equiv \frac{R Z_{1}}{R+Z_{1}}
$$

is used.

Exercise: Two TL's with characteristic impedances $Z_{1}$ and $Z_{2}$ are joined at a junction that also includes a series resistance $R$ as shown in the margin. Determine the reflection coefficient $\Gamma_{12}$ and transmission coefficient $\tau_{12}$ at the junction.


Hint: in this ckt $\Gamma_{12}$ has the usual form in terms of $Z_{e q} \equiv$ $R+Z_{2}$. For $\tau_{12}$ we need $1+\Gamma_{12}$ multiplied by a voltage division factor $Z_{2} /\left(R+Z_{2}\right)$.

