
31 Periodic oscillations in lossless TL ckts
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L• Lossless LC circuits (see margin) can support source-free and co-sinusoidal
voltage and current oscillations at a frequency of

ω =
1√
LC

known as LC resonance frequency.

• Lossless TL circuits can also support source-free voltage and current
oscillations, but the number of resonance frequencies is infinite and the
oscillation waveforms are not restricted to co-sinusoidal forms.
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A TL segment open circuited

at both ends can support

voltage and current oscilla-

tions such that the current

waveform vanishes at both

ends. Absolute values of a

possible set of voltage and

current waveforms satisfying

this boundary condition are

depicted above.

– Resonance frequencies of lossless TL’s are harmonically related,
and therefore superpositions of resonant oscillations on TL’s can
add up to arbitrary periodic waveforms as in Fourier series repre-
sentation of periodic functions.

In this lecture we will examine the periodic oscillations and resonances
encountered in lossless and source-free TL circuits.
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• Consider first a TL segment of some length " having no electrical con-
nection to any elements at either end, as shown in the margin.

– Effectively, both ends of the TL have been “open circuited”, and
thus TL current I(z, t) needs to vanish at z = 0 and z = ". Since

I(z, t) =
f(t − z

v)

Zo
−

g(t + z
v)

Zo

in general, these boundary conditions
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A TL “stub” open circuited

at both ends can support

voltage and current oscilla-

tions such that the current

waveform vanishes at both

ends. Absolute values of a

possible set of voltage and

current waveforms satisfying

this boundary condition are

depicted above.

I(0, t) =
f(t)

Zo
− g(t)

Zo
= 0

and

I(l, t) =
f(t − "

v)

Zo
−

g(t + "
v)

Zo
= 0

require that

◦ g(t) = f(t)

◦ f(t − "
v) = f(t + "

v) ⇒ f(t) = f(t + 2"
v ).

– the first condition says that forward and backward going wave-
forms are the same,

– while the second condition indicates that the waveforms are nec-
essarily periodic with a

◦ period T = 2"
v

◦ fundamental frequency ωo = 2π
T = πv

" .

2



Since no other constraint is imposed, any waveform with the spec-
ified period is admissible, and the most general such expression is
given by the Fourier series

f(t) = Fo +
∞∑

n=1

Fn cos(nωot + θn)

having harmonically related frequencies nωo and arbitrary Fourier
coefficients Fn and θn.

– Hence, in general, the line current

I(z, t) =
f(t − z

v) − f(t + z
v)

Zo

=
∞∑

n=1

Fn

Zo
[cos(nωot + θn − nβoz) − cos(nωot + θn + nβoz)]

where βo ≡ ωo/v = π/" is the fundamental wavenumber.
– The same result written in phasor form is

Ĩ(z) =
∞∑

n=1

Fn

Zo
ejθn[e−jnβoz − ejnβoz] =

∞∑

n=1

Fn

Zo
ejθn(−2j) sin(nβoz),

which also means that (back in the time domain)

I(z, t) =
∞∑

n=1

2Fn

Zo
sin(nωot + θn) sin(nβoz).
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Also1

V (z, t) =
∞∑

n=1

2Fn cos(nωot + θn) cos(nβoz)

from the phasor Ṽ (z) =
∑

n Fnejθn[e−jnβoz − ejnβoz].

In summary:
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A time-snapshot of the cur-

rent standing wave modes

n = 1, 2, 3, 4 on a TL segment

300 m long, open ended on

both sides. Each mode n has

n half wavelengths fitted into

the line length l and high n

modes oscillate with higher

frequencies. See animation

of these modes linked in the

class calendar.

– Periodic variations of arbitrary complexity — or timbre, in analogy
with musical instruments — in V (z, t) and I(z, t) are allowed on an
open circuited (on both ends) TL segment of length " and consist
of superpositions of resonant modes (see margin)

cos(n
πv

"
t + θn) cos(n

π

"
z) and sin(n

πv

"
t + θn) sin(n

π

"
z),

respectively, in the range n ≥ 1, each one being a standing wave.
– Each resonant mode or standing wave of index n ≥ 1 has a

◦ resonance frequency

ω =
πv

"
n rad/s or f =

v

2"
n Hz

◦ resonance wavelength

λ =
v

f
=

2"

n
,

1Note that an arbitrary DC term can also be included in V (z, t).
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implying that
" = n

λ

2
,

that is, the line length is an integer multiple of half-
wavelength at each resonance.

• The resonances examined above also apply to TL’s of length " shorted
at both ends, provided that the mode equations above are swapped
between voltage and current — that is, periodic variations of arbitrary
complexity in I(z, t) and V (z, t) consist of superpositions of resonant
modes

cos(n
πv

"
t + θn) cos(n

π

"
z) and sin(n

πv

"
t + θn) sin(n

π

"
z),

respectively, in the range n ≥ 1.

Note that in this case the voltage modes vanish at z = 0 and z = " as
required by the boundary condition V (0, t) = V (", t) = 0 imposed by
having shorts at both ends.
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• For TL’s of length " open at one end shorted at the other end,
resonant wavelengths and frequencies can be identified by requiring "
to be an odd multiple of λ

4
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A TL stub open at one end

short at the other can sup-

port voltage and current os-

cillations such that the cur-

rent waveform vanishes at

the open end while the volt-

age waveform vanishes at the

shorted end. Absolute values

of a possible set of voltage

and current waveforms sat-

isfying this boundary condi-

tion are depicted above. Res-

onant standing waves modes

on this line will have voltage

and current nulls separated

by an odd multiple of a quar-

ter wavelength.

– the reason for this is, the nulls of waveforms ∝ cos(βz) and sin(βz)
are separated by odd multiples of

λ

4
=

2π/β

4
=

π

2β
.

– Hence, resonance condition is

" =
λ

4
(2n + 1), n ≥ 0,

and since
fλ = v

it follows that the resonance frequencies are

f =
v

2"
(
1

2
+ n) and ω =

πv

"
(
1

2
+ n) for n ≥ 0.
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A time-snapshot of the volt-

age standing wave modes n =

0, 1, 2, 3 on a TL segment 600

m long, open ended at z =

0 and shorted at z = 600

m. Each mode n has 2n +

1 quarter wavelengths fitted

into the line length l and the

high n modes oscillate with

higher frequencies. See ani-

mation of these modes linked

in the class calendar.

Example 1: A lossless TL of 600 m length is left open at z = 0 and shorted at
z = l = 600 m. Determine (a) resonant frequencies of the line, (b) resonant
voltage modes, (c) resonant current modes obtained from the voltage modes
using the telegrapher’s equations. The line has a characteristic impedance of
Zo = 50Ω and a propagation velocity v = c.

Solution: (a) The line must be an odd multiple of quarter wavelengths at the resonant
frequencies. Therefore,

600m = (2n + 1)
λ

4
⇒ 600m = (2n + 1)

c/f

4

leading to

f = (2n + 1)
300m/µs
4 · 600m

= (2n + 1)
1

8
MHz, n ≥ 0.

(b) Since the current modes need to vanish at z = 0, we can express them in terms
of a sine function as

sin(βz) sin(ωt)

where
ω = 2πf = (2n + 1)

π

4
Mrad/s,

and
β =

2π

λ
= (2n + 1)

π

1200
rad/m.

In explicit terms, current modes are

In(z, t) = sin((2n + 1)
π

1200
z) sin((2n + 1)

π

4
t)

where z is in m and t in µs.
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(c) Let’s find the voltage modes Vn(z, t) from the current modes, above using one of
the telegrapher’s equations,

−∂V

∂z
= L∂I

∂t
.

Substituting In(z, t) into this equation and differentiating we find

∂V

∂z
= −(2n + 1)

π

4
L sin((2n + 1)

π

1200
z) cos((2n + 1)

π

4
t).

Next finding the anti-derivative of the above, we conclude

Vn(z, t) = 300L cos((2n + 1)
π

1200
z) cos((2n + 1)

π

4
t).

A snapshot of the animation of resonant voltage modes is shown in the margin. 100 200 300 400 500 600
z !m"
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• How can one get source free oscillations in a TL?

One answer is, the TL might have been connected to a source in the
past before being disconnected from it.

t = 1 µs

3 V

0
z

t = 0

600 m

V (z, 1)

– Consider the circuit shown in the margin where a 3V battery is
switched in and out for 1 µs on a line of length l = 600 m. Also, resistors R at tempera-

ture T connected to TL ter-

minals can transfer thermal

noise energy to the TL. If

the resistors are disconnected

at some point in time, the

energy left on the TL will

be shared between its res-

onant modes (up to a fre-

quency limit KT/! imposed

by quantum mechanics) at an

average level of KT joules

(per mode) where K is the

Boltzmann constant . Lossy

lines with finite conductivity

also produce thermal noise.

Thermal noise is easy to

detect and routinely inter-

feres with weak communi-

cation signals that we care

about!

For v = c, we can write the voltage and the current on the line at
t = 1 µs (by inspection) as

V (z, 1) = 3rect(
z − 150

300
) V and I(z, 1) =

3rect(z−150
300 )

Zo
A.

After t = 1 µs both ends of the TL will be open, and, therefore, only
periodic waveforms with a

– fundamental period of T = 2"
v = 1200

300 = 4 µs and
– fundamental frequency of ωo = 2π

T = π
2 Mrad/s

will be allowed on the source free line.

Therefore, V (z, t) and I(z, t) for t > 1 µs can be expressed as a weighted
superposition of the resonant modes of the line with resonant frequen-
cies nωo, subject to the initial conditions V (z, 1) and I(z, 1) given
above.
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