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• The input impedance and admittance of the series and parallel
LC resonators shown in the margin are, respectively,

Zs = j(ωL − 1

ωC
) and Yp = j(ωC − 1

ωL
),

both of which vanish at the common resonance frequency of these net-
works, namely

ω =
1√
LC

≡ ωo.

– Recall that LC resonators play an important role in the design of
filter and tuning circuits.

In this lecture we will examine the input impedance of microwave
resonators consisting of open or short circuited TL stubs.

• In the last lecture we learned that when a shorted stub is open circuited
at its input port, it shows resonance if the stub length " is an odd
multiple of λ

4 .

– The corresponding resonant frequencies are

f =
v

2"
(
1

2
+ n) for n = 0, 1, 2, 3, · · ·
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and the input port of the stub coincides with a voltage max and
a current null, i.e., I(0, t) = 0 — thus the input impedance Zin of
the stub is infinite at these resonances, just like the impedance of
the parallel LC-circuit depicted above.

– Thus this set of resonant frequencies are referred to as parallel
resonances of the shorted stub.

• We also learned that when the stub length " is an an integer multiple
of λ

2 , its voltage at the input terminal is necessarily zero, implying that
the input impedance Zin must also be zero.

– The corresponding resonant frequencies are

f =
v

2"
n for n = 1, 2, 3, · · ·

and are termed series resonances of the shorted stub, in analogy
with the zero impedance of the series LC-circuit depicted above.
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The diagram in the margin marks the locations of parallel and series
resonance frequencies of the shorted stub associated with infinite and zero
input impedance Zin.

Thus, a shorted stub, included in a circuit such as the one shown in the
margin, will exhibit extreme behavior at these special frequencies — namely
it will appear as a
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• short at its series resonances, causing the entire input signal fi(t) to
appear as VL(t) across the load RL, and

• open at its parallel resonances, causing VL(t) across the load RL to be
notched out.
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We next focus our attention on how Zin of the stub appears at other
frequencies not coinciding with any of the resonances discussed
above.

• In the following we will assume that the TL stub, as well as the circuit
it is connected to, are all in sinusoidal steady state at a frequency
determined by the frequency of the sinusoidal source fi(t).

– In that case d’Alembert solutions will also be co-sinusoidal at the
source frequency ω and we can express V (z, t) and I(z, t) on the
line as

V (z, t) = Re{V +ejω(t−z
v )}+Re{V −ejω(t+z

v )} ⇔ Ṽ (z) = V +e−jβz+V −ejβz

and

I(z, t) =
Re{V +ejω(t−z

v )}− Re{V −ejω(t+z
v )}

Zo
⇔ Ĩ(z) =

V +e−jβz − V −ejβz

Zo
,

where
– β = ω

v = ω
√
LC is the wavenumber at frequency ω, and
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– V + and V − are phasors of forward and backward propagating
voltage waves on the line evaluated at z = 0.

We have expressed the phasor counterparts of co-sinusoidal waves V (z, t)
and I(z, t) above on the right, for it will be necessary to use phasors in
defining an input impedance — the impedance concept belongs to the
frequency domain!

• Before applying the boundary condition at the shorted end of the TL
stub, it will be convenient to shift the origin of our coordinate system
to coincide with the shorted termination rather than the input port of
the TL.

• It will also be convenient to refer to “−z” as “d”, with the variable d
growing to the left from the short termination toward the input terminal
of the line.

Short
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In that case, the input impedance of the shorted stub can be denoted
as

Z(l) =
Ṽ (d = l)

Ĩ(d = l)
,

where

Ṽ (d) ≡ V +ejβd + V −e−jβd and Ĩ(d) ≡ V +ejβd − V −e−jβd

Zo
.

• An immediate benefit of our new notation comes when we apply the
voltage boundary condition at the short termination.
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– We apply it as

V (0, t) = 0 ⇔ Ṽ (0) = V + + V − = 0

from which it follows that

Short
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Circuit

V − = −V +

and thus

Ṽ (d) ≡ V +(ejβd − e−jβd) = j2V + sin(βd)

and
Ĩ(d) ≡ V +(ejβd + e−jβd)

Zo
= Yo2V

+ cos(βd),

where
Yo ≡

1

Zo
Characteristic admittance.

– Finally the input impedance of the shorted stub is

Z(l) =
Ṽ (l)

Ĩ(l)
= jZo tan(βl).

Note that: input impedance Z(l) = 0 + jX(l) is (see margin for X(l))

Π
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5

tan!Βl"

1. purely reactive for all l,

2. has a positive imaginary part and therefore it is inductive for

βl =
2π

λ
l <

π

2
rad = 90o ⇒ 0 < l <

λ

4
= Quarter wavelength.
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3. has a negative imaginary part and therefore it is capacitive for

π

2
< βl =

2π

λ
l < π rad = 180o ⇒ λ

4
< l <

λ

2
= Half wavelength.

4. is periodic with a period of λ
2 over l, which means that

all possible reactive impedances of the form jX are realized for
0 < l < λ

2 .

• a shorted TL stub of length 0 < l < λ
2 spans all possible impedances

that can be provided by all possible inductors and capacitors!

for a length l & λ
4 shorted stub is a pure inductor with impedance

Z(l) = jZo tan(βl) ≈ jZoβl = j

√
L
C

ω
√
LCl = jωLl.

• here we used tan(βl) ≈ βl, which is valid when βl & 1 in radians.

5. at l = λ
4 the input admittance of the shorted stub,

Y (l) =
1

Z(l)
=

1

jZo tan(βl)
= −jYo cot(βl),

vanishes, meaning that

• a shorted stub of length l = λ
4 appears at its input terminals like

an open (see margin).

Short
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4
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6. at l = λ
2 the input impedance of the shorted stub returns back to

zero, which in turn indicates, in view of (5), that

• an open ended stub of length l = λ
4 must appear at its input

terminals like a short (see margin).

Next set of examples illustrate the uses of shorted/opened TL stubs as circuit
elements.
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Example 1: A shorted TL stub of length l = 3 m is connected in series with a resistor
RL = 50Ω as shown in the diagram in the margin. Plot the magnitude of the
frequency response H(ω) = ṼL

F̃
as a function of frequency f = ω

2π if Zo = 50Ω
and v = c on the stub. Interpret the amplitude response curve |H(ω)| in terms
of resonance frequencies of the shorted line.

Solution: Using β = ω
c and voltage division, we find that frequency response

H(ω) =
ṼL

F̃i

=
RL

RL + jZo tan(βl)
=

1

1 + j tan(ωc l)
.

The plot of |H(ω)| with the given parameters is shown in the margin. The peaks
of the amplitude response occur at the series resonance frequencies of the shorted
stub when its input impedance is zero (an effective short). The nulls of the
amplitude response correspond to parallel resonances of the stub when it appears
like an open at its input terminals.
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Example 2: Consider a shorted TL connected at d = l to an inductor L. Determine
the resonances of the combined network.

Solution: The input impedance of the shorted line is
Z(l) = jZo tan(βl) = jZo tan(ω

√
LCl)

whereas inductor L has an impedance ZL = jωL. If the inductor and shorted stub
are connected in series (see margin), then the series resonances of the network
will be observed when the network input impedance

ZL + Z(l) = jωL + jZo tan(ω
√
LCl)

equals zero. The parallel resonances of the network will be observed when the
impedance is infinite. While the series resonance frequencies of the stub will be
shifted because of the inductor, parallel resonances will not shift (infinities due
to tan function cannot be shifted by the finite additive term due to the inductor).
The shifted series resonance frequencies ωn can be found graphically by plotting
ZL + Z(l) and looking for the zero crossings.

If the inductor and shorted stub are connected in parallel, then the parallel resonances
of the network will be observed when the network input admittance

YL + Y (l) =
1

jωL
+

1

jZo tan(ω
√
LCl)

equals zero (same as infinite input impedance). The series resonances , on the
other hand, will be observed when the admittance is infinite (same as zero input
impedance). Series resonances of the stub will not be shifted with, unlike its
parallel resonances. The shifted parallel resonance frequencies ωn will equal the
series resonance frequencies of the series connected network described above.
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Example 3: A shorted TL stub of length l = 3 m is connected in series with a a
capacitor C = 10 pf and a resistor RL = 50Ω as shown in the diagram in the
margin. Plot the magnitude of the frequency response H(ω) = ṼL

F̃
as a function

of frequency f = ω
2π if Zo = 50Ω and v = c on the stub. Interpret the amplitude

response curve |H(ω)| in terms of resonance frequencies of the shorted line.

Solution: Using β = ω
c and voltage division, we find that frequency response

H(ω) =
ṼL

F̃i

=
RL

RL + 1
jωC + jZo tan(βl)

=
1

1 + 1
jωRLC

+ j tan(ωc l)
.

The plot of |H(ω)| with the given parameters is shown in the margin. The peaks
of the amplitude response occur at the shifted series resonance frequencies of the
shorted T.L. stub. The nulls of the amplitude response correspond to parallel
resonances of the stub when it appears open.
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Example 4:

(a) If in the TL circuit shown in the margin IR = 2∠0o A, what is the line length l
in terms of wavelength λ of the given source frequency on the line?

(b) Repeat for IR = 0.

Note: starting in this example we are dropping the tildes on
the phasors.

Solution:

(a) If IR = 2∠0o A, then KCL application at the source terminal implies that I(l) = 0.

In that case the TL has an open at d = l. Since d = 0 is also an open,
we need to have l to be an integer multiple of λ

2 .

In other words, the condition of IR = 2∠0o will only be realized in the
above circuit if the source frequency is such that the TL length l happens to be
some integer multiple of λ

2 at the given frequency.

(b) If IR = 0, then V (l) = (50Ω)IR = 0, implying that the T.L. has a short at d = l.

Since d = 0 is an open, we need to have l some odd multiple of λ
4 .

0
d

+

-

+

-

2! 0 A

50 Ω

V (0)

I(0) = 0

V (l)

I(l)

l

IR
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