33 TL circuits with half- and quarter-wave transformers

- Last lecture we established that phasor solutions of telegrapher's equations for TL's in sinusoidal steady-state can be expressed as

$$
V(d)=V^{+} e^{j \beta d}+V^{-} e^{-j \beta d} \quad \text { and } \quad I(d)=\frac{V^{+} e^{j \beta d}-V^{-} e^{-j \beta d}}{Z_{o}}
$$

in a new coordinate system shown in the margin.
By convention the load is located on the right at $z=0=d$, and the TL input connected to a generator or some source circuit is shown on the left at $d=l$.

We have replaced the short termination of the previous lecture with an arbitrary load impedance

$$
Z_{L}=R_{L}+j X_{L}
$$

In this lecture we will discuss sinusoidal steady-state TL circuit problems having arbitrary reactive loads but with line lengths l constrained to be integer multiples of $\frac{\lambda}{4}$ (at the operation frequency).
The constraint will be lifted next lecture when we will develop the general analysis tools for sinusoidal steady-state TL circuits.

- In the TL circuit shown in the margin an arbitrary load Z_{L} is connected to a TL of length $l=\frac{\lambda}{2}$ at the source frequency.

Given that

$$
e^{ \pm j \beta \frac{\lambda}{2}}=e^{ \pm j \frac{2 \pi}{\lambda} \frac{\lambda}{2}}=e^{ \pm j \pi}=-1,
$$

the general phasor relations

$$
V(d)=V^{+} e^{j \beta d}+V^{-} e^{-j \beta d} \text { and } I(d)=\frac{V^{+} e^{j \beta d}-V^{-} e^{-j \beta d}}{Z_{o}}
$$

imply

$$
\begin{aligned}
V_{i n} & \equiv V\left(\frac{\lambda}{2}\right)=-V^{+}-V^{-}=-V(0)=-V_{L}, \\
I_{i n} & \equiv I\left(\frac{\lambda}{2}\right)=\frac{-V^{+}+V^{-}}{Z_{o}}=-I(0)=-I_{L} .
\end{aligned}
$$

We conclude that a $\frac{\lambda}{2}$-transformer

- inverts the algebraic sign of its voltage and current inputs at the load end (and vice versa), and
- has an input impedance identical with the load impedance since

$$
Z_{i n} \equiv \frac{V_{i n}}{I_{i n}}=\frac{-V_{L}}{-I_{L}}=Z_{L} .
$$

These very simple results are easy to remember and use.

- In the TL circuit shown in the margin an arbitrary load Z_{L} is connected to a TL of length $l=\frac{\lambda}{4}$ at the source frequency.

Given that

$$
e^{ \pm j \beta \frac{\lambda}{4}}=e^{ \pm j \frac{2 \pi}{\lambda} \frac{\lambda}{4}}=e^{ \pm j \frac{\pi}{2}}= \pm j,
$$

general phasor relations

$$
V(d)=V^{+} e^{j \beta d}+V^{-} e^{-j \beta d} \text { and } I(d)=\frac{V^{+} e^{j \beta d}-V^{-} e^{-j \beta d}}{Z_{o}}
$$

imply

$$
\begin{gathered}
V_{i n} \equiv V\left(\frac{\lambda}{4}\right)=j V^{+}-j V^{-}=j I(0) Z_{o}=j I_{L} Z_{o}, \\
I_{i n} \equiv I\left(\frac{\lambda}{4}\right)=\frac{j V^{+}+j V^{-}}{Z_{o}}=j \frac{V(0)}{Z_{o}}=j \frac{V_{L}}{Z_{o}} .
\end{gathered}
$$

We conclude that a $\frac{\lambda}{4}$-transformer

- has an input impedance

Quarter-wave current-forcing equation:

$$
Z_{i n} \equiv \frac{V_{i n}}{I_{i n}}=\frac{j I_{L} Z_{o}}{j V_{L} / Z_{o}}=\frac{Z_{o}^{2}}{V_{L} / I_{L}}=\frac{Z_{o}^{2}}{Z_{L}},
$$

- and provides a load current

$$
I_{L}=-j \frac{V_{i n}}{Z_{o}}
$$

proportional to input voltage $V_{\text {in }}$ but independent of load impedance
Load voltage

$$
V_{L}=Z_{L} I_{L}
$$

once I_{L} is available from above equation.

Example 1: Given $Z_{L}=50+j 50 \Omega$, what is $Z_{i n}$ for a $\frac{\lambda}{4}$ transformer with $Z_{o}=50 \Omega$?
Solution: It is

$$
Z_{i n}=\frac{Z_{o}^{2}}{Z_{L}}=\frac{50^{2}}{50+j 50}=\frac{50}{1+j 1}=\frac{50}{1+j 1} \frac{1-j 1}{1-j 1}=25-j 25 \Omega .
$$

Notice that an inductive Z_{L} has been turned into a capacitive $Z_{\text {in }}$ by $\frac{\lambda}{4}$ transformer.

Example 2: The load and the transformer of Example 1 are connected to a source with voltage phasor $V_{g}=100 \angle 0^{\circ} \mathrm{V}$ at the input port. What is the load current I_{L} and what is the average power absorbed by the load?

Solution: Since $V_{i n}=V_{g}=100 \angle 0^{\circ} \mathrm{V}$, the current-forcing formula for the quarter-wave transformer implies

$$
I_{L}=-j \frac{V_{i n}}{Z_{o}}=-j \frac{100}{50}=-j 2 \mathrm{~A} .
$$

To find the average power absorbed, we first note that load voltage

$$
V_{L}=Z_{L} I_{L}=(50+j 50)(-j 2)=100-j 100 \mathrm{~V}
$$

Thus,

$$
P_{L}=\frac{1}{2} \operatorname{Re}\left\{V_{L} I_{L}^{*}\right\}=\frac{1}{2} \operatorname{Re}\{(100-j 100)(j 2)\}=100 \mathrm{~W} .
$$

Example 3: Load $Z_{L}=100 \Omega$ is connected to a T.L. with length $l=0.75 \lambda$. At the generator end, $d=0.75 \lambda$, a source with open circuit voltage $V_{g}=j 10 \mathrm{~V}$ and Thevenin impedance $Z_{g}=25 \Omega$ is connected. Determine V_{L} and I_{L} if $Z_{o}=50 \Omega$.

Solution: First we determine input impedance $Z_{\text {in }}$ by noting that $Z_{L}=100 \Omega$ transforms to itself, namely 100Ω at $d=0.5 \lambda$, but then it transforms from $d=0.5 \lambda$ to 0.75λ as

$$
Z_{i n}=\frac{Z_{o}^{2}}{Z(0.5 \lambda)}=\frac{50^{2}}{100}=25 \Omega
$$

Hence, using voltage division, we find,

$$
V_{i n}=V_{g} \frac{Z_{i n}}{Z_{g}+Z_{i n}}=j 10 \frac{25}{25+25}=j 5 \mathrm{~V}
$$

Next, using half-wave transformer rule, we notice that

$$
V(0.25 \lambda)=-V_{i n}=-j 5 \mathrm{~V}
$$

and finally applying the quarter-wave current forcing equation with $V(0.25 \lambda)$ we get

$$
I_{L}=-j \frac{V(0.25 \lambda)}{Z_{o}}=-j \frac{-j 5}{50}=-0.1 \mathrm{~A}
$$

Clearly, then, the load voltage is

$$
V_{L}=Z_{L} I_{L}=(100 \Omega)(-0.1 \mathrm{~A})=-10 \mathrm{~V}
$$ get

Example 4: In the circuit shown in the margin, $Z_{L 1}=50 \Omega, Z_{L 2}=100 \Omega$, and $Z_{o 1}=$ $Z_{o 2}=50 \Omega$. Determine $I_{L 1}$ and $I_{L 2}$ if $V_{i n}=5 \mathrm{~V}$. Both T.L. sections are quarterwave transformers.

Solution: Using the current-forcing equation, we have

$$
I_{L 1}=I_{L 2}=-j \frac{V_{i n}}{Z_{o}}=-j \frac{5}{50}=-j 0.1 \mathrm{~A}
$$

Consequently,

$$
V_{L 1}=I_{L 1} Z_{L 1}=-j 0.1 \mathrm{~A} \times 50 \Omega=-j 5 \mathrm{~V}
$$

and

$$
V_{L 2}=I_{L 2} Z_{L 2}=-j 0.1 \mathrm{~A} \times 100 \Omega=-j 10 \mathrm{~V} .
$$

Thus, total avg power absorbed is

$$
\begin{aligned}
P & =\frac{1}{2} \operatorname{Re}\left\{V_{L 1} I_{L 1}^{*}\right\}+\frac{1}{2} \operatorname{Re}\left\{V_{L 2} I_{L 2}^{*}\right\} \\
& ==\frac{1}{2} \operatorname{Re}\{-j 5 \times j 0.1\}+\frac{1}{2} \operatorname{Re}\{-j 10 \times j 0.1\}=0.75 \mathrm{~W} .
\end{aligned}
$$

