35 Smith Chart examples

Example 1: A load $Z_{L}=100+j 50 \Omega$ is connected across a TL with $Z_{o}=50 \Omega$ and $l=0.4 \lambda$. At the generator end, $d=l$, the line is shunted by an impedance $Z_{s}=100 \Omega$. What are the input impedance $Z_{i n}$ and admittance $Y_{i n}$ of the line, including the shunt connected element.

Solution: Normalized load impedance

$$
z(0)=\frac{Z_{L}}{Z_{o}}=\frac{100+j 50}{50}=2+j 1
$$

is entered in the SC shown in the margin on the top. Clockwise rotation (from load toward generator) at fixed $|\Gamma|$ (red circle) by

$$
0.4 \lambda \Leftrightarrow 0.8 \times 360^{\circ}=288^{\circ}
$$

takes us to

$$
z(l) \approx 0.6+j 0.66 \text { and } y(l) \approx 0.75-j 0.83
$$

as shown on the SC in the middle. Hence, including the shunt element with normalized input impedance $z_{s i}=2$ and admittance $y_{s i}=\frac{1}{2}$, we obtain

$$
y_{i n}=y(l)+y_{s i} \approx 1.25-j 0.83
$$

for the overall normalized input admittance of the shunted line as shown on the SC in the bottom - the corresponding normalized input impedance is

$$
z_{i n}=\frac{1}{y_{i}} \approx 0.56+j 0.37 .
$$

Hence, the unnormalized input impedance and admittance are

$$
Z_{i n}=Z_{o} z_{i n} \approx 27.8+j 18.4 \Omega \text { and } Y_{i n}=Y_{o} y_{i n} \approx 0.025-j 0.017 \mathrm{~S} .
$$

Example 2: The TL network described in Example 1 is connected to a generator with open circuit voltage phasor $V_{g}=100 \angle 0 \mathrm{~V}$ and internal impedance $Z_{g}=25 \Omega$. What is the average power (a) input of the shunted line, (b) delivered to the shunt element, delivered to the load.

Solution:

(a) Using the input impedance

$$
Z_{i n} \approx 27.8+j 18.4 \Omega,
$$

from Example 1, we can write

$$
V_{i n}=V_{g} \frac{Z_{i n}}{Z_{g}+Z_{i n}} \text { and } I_{i n}=\frac{V_{g}}{Z_{g}+Z_{i n}} .
$$

Therefore, the average power input of the shunted line is

$$
\begin{aligned}
P & =\frac{1}{2} \operatorname{Re}\left\{V_{i n} I_{i n}^{*}\right\}=\frac{1}{2} \operatorname{Re}\left\{\frac{V_{g} Z_{i n}}{Z_{g}+Z_{i n}}\left(\frac{V_{g}}{Z_{g}+Z_{i n}}\right)^{*}\right\} \\
& =\frac{\left|V_{g}\right|^{2}}{2\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Z_{i n}\right\}=\frac{100^{2}}{2|25+27.8+j 18.4|^{2}} 27.8 \approx 44.44 \mathrm{~W} .
\end{aligned}
$$

(b) The shunt element $Z_{s}=100 \Omega$ sees the same voltage $V_{i n}$ and conducts a current $V_{i n} / Z_{s}$. Therefore it absorbs an average power of

$$
\begin{aligned}
P & =\frac{1}{2} \operatorname{Re}\left\{V_{i n}\left(\frac{V_{i n}}{Z_{s}}\right)^{*}\right\}=\frac{\left|V_{i n}\right|^{2}}{2 Z_{s}}=\frac{\left|V_{g} Z_{i n}\right|^{2}}{2 Z_{s}\left|Z_{g}+Z_{i n}\right|^{2}} \\
& \approx \frac{|100 \cdot(27.8+j 18.4)|^{2}}{2 \cdot 100 \cdot|25+27.8+j 18.4|^{2}} \approx 17.78 \mathrm{~W}
\end{aligned}
$$

The remainder of 44.44 W will be absorbed in Z_{L}.

Example 3: A TL of length $l=0.3 \lambda$ has an input impedance $Z_{i n}=50+j 50 \Omega$. Determine the load impedance $Z_{L}=Z(0)$ and $Y_{L}=Y(0)$ given that $Z_{o}=50 \Omega$ for the line.

Solution: First enter the normalized inpur impedance

$$
z_{i n}=\frac{Z_{i n}}{Z_{o}}=\frac{50+j 50}{50}=1+j
$$

in the SC as shown in the margin on the top. Counter-clockwise rotation (from generator toward load) at fixed $|\Gamma|$ (red circle) by

$$
0.3 \lambda \Leftrightarrow 0.6 \times 360^{\circ}=216^{\circ}
$$

takes us to

$$
z(0) \approx 0.76-j 0.84 \text { and } y(0) \approx 0.59+j 0.66
$$

as shown on the next SC at the load point. Hence, we find

$$
Z_{L}=Z_{o} z(0) \approx 50 \cdot(0.76-j 0.84)=37.97-j 41.88 \Omega
$$

and

$$
Y_{L}=Y_{o} y(0) \approx \frac{1}{50}(0.59+j 0.66)=0.012+j 0.013 \mathrm{~S}
$$

Example 4: A TL of length $l=0.5 \lambda$ and $Z_{o}=50 \Omega$ has a load reflection coefficient $\Gamma_{L}=0.5$ and and a shunt connected TL at $d=0.2 \lambda$. The shunt connected TL has $l=0.3 \lambda, Z_{o}=50 \Omega$, and a load reflection coefficient $\Gamma_{L}=-0.5$. Determine the input impedance of the line.

Solution: Recall that the SC covers the unit circle of the complex plane and therefore the complex number

$$
\Gamma_{L}=0.5+j 0=0.5
$$

can be entered directly in the SC as shown on the top SC in the margin. Clockwise rotation (from load toward generator) at fixed $|\Gamma|$ (red circle) by

$$
0.2 \lambda \Leftrightarrow 0.4 \times 360^{\circ}=144^{\circ}
$$

takes us to

$$
z(0.2 \lambda) \approx 0.36-j 0.29 \text { and } y(0.2 \lambda) \approx 1.7+j 1.33
$$

as shown on the SC in the middle. Likewise, entering

$$
\Gamma_{L s}=-0.5+j 0=-0.5
$$

for the shunt connected stub in the third SC and rotating clockwise by

$$
0.3 \lambda \Leftrightarrow 0.6 \times 360^{\circ}=216^{\circ}
$$

we obtain

$$
z_{s}(0.3 \lambda) \approx 1.7-j 1.33 \text { and } y_{s}(0.3 \lambda) \approx 0.36+j 0.29
$$

We proceed by combining the normalized admittances as

$$
y_{c}=y(0.2 \lambda)+y_{s}(0.3 \lambda) \approx(1.7+j 1.33)+(0.36+j 0.29)=2.065+j 1.61837,
$$

and entering it in the next SC. Finally rotating clockwise once again by

$$
0.3 \lambda \Leftrightarrow 0.6 \times 360^{\circ}=216^{\circ}
$$

we obtain, from the last SC

$$
z_{i n} \approx 3.38-j 0.69 \quad \Rightarrow \quad Z_{i n}=z_{i n} Z_{o} \approx 169-j 34.4 \Omega
$$

Example 5: What is the load impedance $Z_{L s}$ terminating the shunt connected stub in Example 4?

Solution: Given that the corresponding reflection coefficient is

$$
\Gamma_{L s}=-0.5
$$

it follows from the bilinear transformation linking $z_{L s}$ and $\Gamma_{L s}$ that

$$
z_{L s}=\frac{1+\Gamma_{L s}}{1-\Gamma_{L s}}=\frac{1-0.5}{1+0.5}=\frac{1}{3} .
$$

Hence, the impedance is

$$
Z_{L s}=Z_{o} z_{L s}=\frac{50}{3} \Omega .
$$

Example 6: What is the load impedance Z_{L} in Example 4?
Solution: This is similar to Example 5. Given that the load reflection coefficient is

$$
\Gamma_{L}=0.5
$$

it follows from the bilinear transformation linking z_{L} and Γ_{L} that

$$
z_{L}=\frac{1+\Gamma_{L}}{1-\Gamma_{L}}=\frac{1+0.5}{1-0.5}=3 .
$$

Hence, the impedance is

$$
Z_{L}=Z_{o} z_{L}=150 \Omega
$$

