36 Smith Chart and VSWR

- Consider the general phasor expressions

$$
V(d)=V^{+} e^{j \beta d}\left(1+\Gamma_{L} e^{-j 2 \beta d}\right) \text { and } I(d)=\frac{V^{+} e^{j \beta d}\left(1-\Gamma_{L} e^{-j 2 \beta d}\right)}{Z_{o}}
$$

describing the voltage and current variations on TL's in sinusoidal steady-state.

- Unless $\Gamma_{L}=0$, these phasors contain reflected components, which means that voltage and current variations on the line "contain" standing waves.

In that case the phasors go through cycles of magnitude variations as a function of d, and in the voltage magnitude in particular (see margin) varying as

$$
|V(d)|=\left|V^{+}\right|\left|1+\Gamma_{L} e^{-j 2 \beta d}\right|=\left|V^{+}\right||1+\Gamma(d)|
$$

takes maximum and minimum values of

$$
|V(d)|_{\max }=\left|V^{+}\right|\left(1+\left|\Gamma_{L}\right|\right) \text { and }|V(d)|_{\min }=\left|V^{+}\right|\left(1-\left|\Gamma_{L}\right|\right)
$$

at locations $d=d_{\max }$ and $d_{\min }$ such that

$$
\Gamma\left(d_{\max }\right)=\Gamma_{L} e^{-j 2 \beta d_{\max }}=\left|\Gamma_{L}\right| \text { and } \Gamma\left(d_{\min }\right)=\Gamma_{L} e^{-j 2 \beta d_{\min }}=-\left|\Gamma_{L}\right|
$$

and

$$
d_{\max }-d_{\min } \text { is an odd multiple of } \frac{\lambda}{4} .
$$

Complex addition displayed graphically superposed on a Smith Chart

$|1+\Gamma(d)|$ maximizes for $d=d_{\max }$
$|1+\Gamma(d)|$ minimizes for $d=d_{\text {min }}$ such that $\Gamma\left(d_{\text {min }}\right)=-\Gamma\left(d_{\max }\right)$

- These results can be most easily understood and verified graphically on a SC as shown in the margin.
- We define a parameter known as voltage standing wave ratio, or VSWR for short, by

$$
\operatorname{VSWR} \equiv \frac{\left|V\left(d_{\max }\right)\right|}{\left|V\left(d_{\min }\right)\right|}=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|} \Leftrightarrow\left|\Gamma_{L}\right|=\frac{\operatorname{VSWR}-1}{\operatorname{VSWR}+1} .
$$

Notice that the VSWR and $\left|\Gamma_{L}\right|$ form a bilinear transform pair just like

$$
z=\frac{1+\Gamma}{1-\Gamma} \quad \Leftrightarrow \quad \Gamma=\frac{z-1}{z+1}
$$

Since

$$
\Gamma\left(d_{\max }\right)=\left|\Gamma_{L}\right| \quad \Rightarrow \quad \text { VSWR }=\frac{1+\Gamma\left(d_{\max }\right)}{1-\Gamma\left(d_{\max }\right)},
$$

this analogy between the transform pairs also implies that

$$
z\left(d_{\max }\right)=\mathrm{VSWR},
$$

as explicitly marked on the the SC shown in the margin. Consequently,

- the VSWR of any TL can be directly read off from its SC plot as the normalized impedance value $z\left(d_{m a x}\right)$ on constant- $\left|\Gamma_{L}\right|$ circle crossing the positive real axis of the complex plane.

Complex addition displayed graphically superposed on a Smith Chart

$|1+\Gamma(d)|$ maximizes for $d=d_{\text {max }}$
$|1+\Gamma(d)|$ minimizes for $d=d_{\text {min }}$ such that $\Gamma\left(d_{\text {min }}\right)=-\Gamma\left(d_{\max }\right)$

- The extreme values the VSWR can take are:

1. $\mathrm{VSWR}=1$ if $\left|\Gamma_{L}\right|=0$ and the TL carries no reflected wave.
2. $\operatorname{VSWR}=\infty$ if $\left|\Gamma_{L}\right|=1$ corresponding to having a short, open, or a purely reactive load that causes a total reflection.

$|1+\Gamma(d)|$ maximizes for $d=d_{\max }$
$|1+\Gamma(d)|$ minimizes for $d=d_{\text {min }}$ such that $\Gamma\left(d_{\text {min }}\right)=-\Gamma\left(d_{\text {max }}\right)$

- In the lab it is easy and useful to determine the VSWR and $d_{\max }$ or $d_{\text {min }}$ of a TL circuit with an unknown load, since

1. given the VSWR,

$$
\left|\Gamma_{L}\right|=\frac{\operatorname{VSWR}-1}{\operatorname{VSWR}+1}
$$

is easily determined, and
2. given $d_{\max }$ or $d_{\min }$ the complex Γ_{L} or its transform z_{L} can be easily obtained.

Say $d_{\text {max }}$ is known: then,

- since (as we have seen above)

$$
\Gamma\left(d_{\max }\right)=\Gamma_{L} e^{-j 2 \beta d_{\max }}=\left|\Gamma_{L}\right|
$$

it follows that

$$
\Gamma_{L}=\left|\Gamma_{L}\right| e^{j 2 \beta d_{\max }} \Rightarrow z_{L}=\frac{1+\Gamma_{L}}{1-\Gamma_{L}} .
$$

- alternatively, z_{L} can be obtained directly on the SC by rotating counterclockwise by $d_{\text {max }}$ from the location of

$$
z\left(d_{\max }\right)=\mathrm{VSWR} .
$$

These techniques are illustrated in the next example.

Complex addition displayed graphically superposed on a Smith Chart

$|1+\Gamma(d)|$ maximizes for $d=d_{\max }$
$|1+\Gamma(d)|$ minimizes for $d=d_{\text {min }}$ such that $\Gamma\left(d_{\text {min }}\right)=-\Gamma\left(d_{\max }\right)$

Example 1: An unknown load Z_{L} on a $Z_{o}=50 \Omega$ TL has

$$
V\left(d_{\min }\right)=20 \mathrm{~V}, \quad, d_{\min }=0.125 \lambda \text { and } \quad \mathrm{VSWR}=4 .
$$

Determine (a) the load impedance Z_{L}, and (b) the average power P_{L} absorbed by the load.

Solution:

(a) As shown in the top SC in the margin, $\mathrm{VSWR}=4$ is entered in the SC as $z\left(d_{\max }\right)=4+j 0$, and constant $\left|\Gamma_{L}\right|$ circle is then drawn (red circle) passing through $z\left(d_{\text {max }}\right)=4$.

Right across $z\left(d_{\max }\right)=4$ on the circle is $z\left(d_{\text {min }}\right)=0.25$.
A counter-clockwise rotation from $z\left(d_{\text {min }}\right)=0.25$ by one fourth of a full circle corresponding to a displacement of $d_{\text {min }}=0.125 \lambda$ (a full circle corresponds to a $\lambda / 2$ displacement) takes us to

$$
z_{L} \approx 0.4706-j 0.8823
$$

as shown in the second SC. Hence, this gives

$$
Z_{L}=Z_{o} z_{L}=50(0.4706-j 0.8823)=23.53-j 44.12 \Omega .
$$

(b) We will calculate P_{L} by using $V\left(d_{\text {min }}\right)$ and $I\left(d_{\text {min }}\right)$. Since

$$
z\left(d_{\min }\right)=0.25 \text { it follows that } Z\left(d_{\min }\right)=\frac{1}{4} 50 \Omega=12.5 \Omega
$$

Therefore the voltage and current phasors at the voltage minimum location are

$$
V\left(d_{m i n}\right)=20 \mathrm{~V} \text { and } I\left(d_{m i n}\right)=\frac{20 \mathrm{~V}}{12.5 \Omega} .
$$

Average power transported toward the load at $d-d_{\min }$ is, therefore,

$$
P\left(d_{\text {min }}\right)=\frac{1}{2} \operatorname{Re}\left\{V\left(d_{\text {min }}\right) I\left(d_{\text {min }}\right)^{*}\right\}=\frac{1}{2} \operatorname{Re}\left\{20 \frac{20}{12.5}\right\}=\frac{400}{25} \mathrm{~W}=16 \mathrm{~W} .
$$

Since the TL is assumed to be lossless we should have

$$
P_{L}=P\left(d_{\min }\right)=16 \mathrm{~W}
$$

Example 2: If the TL circuit in Example 1 has $l=0.625 \lambda$, and a generator with an internal impedance $Z_{g}=50 \Omega$, determine the generator voltage V_{g}.

Solution: Given that $l=0.625 \lambda$ and $d_{\min }=0.125 \lambda$, we note that there is just one half-wave transformer between $l=0.625 \lambda$ and $d_{\min }=0.125 \lambda$. Therefore

$$
V_{i n}=-V\left(d_{\min }\right)=-20 \mathrm{~V} \text { and } Z_{i n}=Z\left(d_{\min }\right)=12.5 \Omega .
$$

But also

$$
V_{i n}=V_{g} \frac{Z_{i n}}{Z_{g}+Z_{i n}}
$$

Consequently,

$$
V_{g}=V_{i n} \frac{Z_{g}+Z_{i n}}{Z_{i n}}=-20 \frac{50+12.5}{12.5}=-20 \frac{62.5}{12.5}=-100 \mathrm{~V} .
$$

Example 3: Determine V^{+}and V^{-}in the circuit of Examples 1 and 2 above such that the voltage phasor on the line is given by

$$
V(d)=V^{+} e^{j \beta d}+V^{-} e^{-j \beta d} .
$$

Solution: Looking back to Example 1 (also see the SC's in the margin), we first note that

$$
\left|\Gamma_{L}\right|=\frac{\mathrm{VSWR}-1}{\mathrm{VSWR}+1}=\frac{4-1}{4+1}=0.6=\Gamma\left(d_{\max }\right)=-\Gamma\left(d_{\min }\right) .
$$

Hence, evaluating $V(d)$ at $d=d_{\text {min }}$, we have

$$
\begin{aligned}
V\left(d_{\text {min }}\right) & =V^{+} e^{j \beta d_{\text {min }}}\left(1+\Gamma\left(d_{\text {min }}\right)\right) \\
& =V^{+}\left(e^{j \frac{2 \pi}{\lambda} \frac{\lambda}{8}}\right)(1+(-0.6))=0.4 e^{j \frac{\pi}{4}} V^{+}=20 \mathrm{~V},
\end{aligned}
$$

from which

$$
V^{+}=50 e^{-j \frac{\pi}{4}} \mathrm{~V}
$$

Since

$$
\Gamma_{L}=\Gamma(0)=\Gamma\left(d_{\min }\right) e^{j 2 \beta d_{m i n}}=-0.6 e^{j \frac{\pi}{2}},
$$

it follows that

$$
V^{-}=\Gamma_{L} V^{+}=-0.6 e^{j \frac{\pi}{2}} \times 50 e^{-j \frac{\pi}{4}}=-30 e^{j \frac{\pi}{4}} \mathrm{~V}
$$

SmithChart

Example 4: Determine the load current $I_{L}=I(0) V^{+}$in the circuit of Examples 1-3 above.

Solution: In general,

$$
I(d)=\frac{V^{+} e^{j \beta d}-V^{-} e^{-j \beta d}}{Z_{o}}
$$

Therefore,

$$
I_{L}=I(0)=\frac{V^{+}-V^{-}}{Z_{o}} .
$$

Using $Z_{o}=50 \Omega$ and

$$
V^{+}=50 e^{-j \frac{\pi}{4}} \mathrm{~V} \text { and } V^{-}=-30 e^{j \frac{\pi}{4}} \mathrm{~V}
$$

from Example 3, we find that

$$
I_{L}=\frac{50 e^{-j \frac{\pi}{4}}+30 e^{j \frac{\pi}{4}}}{50}=e^{-j \frac{\pi}{4}}+0.6 e^{j \frac{\pi}{4}} \mathrm{~A} .
$$

