
37 Smith Chart and impedance matching
• In lossless TL circuits the average power input Pin at the generator end

precisely matches the average power delivered to the load, PL.
In fact, Pin and PL also match the average power P (d) transported on
the line at an arbitrary d.
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– Note that P (d) is the difference of power transported
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toward the load by the “forward-going” wave, and
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toward the generator by the reflected wave.
– Also note that
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so that |ΓL|2 is an effective power reflection coefficient.
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• In TL circuits with load impedances ZL unmatched to the character-
istic impedance Zo, the reflected power
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|ΓL|2

will be non-zero and the VSWR>1.
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This a condition not favored by practical signal generators used in
TL circuits.

• Most generators are designed (in their biasing arrangements) to oper-
ate in circuits with low VSWR (close to unity), requiring Zin closely
matched to Rg, most frequently 50 Ω, an optimal characteristic impedance
value for coax-lines (when line losses are taken into account).

• Thus a standard procedure is to use TL’s with Zo = Rg, and uti-
lize a lossless impedance matching network on the TL if the load
impedance ZL #= Zo.

– This practice is called impedance matching.

Impedance matching achieves VSWR=1 between the generator and the match-
ing network inserted at a location between the load and the generator.

• The inserted network should be designed to yield an input impedance
equal Zo at its input terminals.

The following examples illustrate different ways of achieving an
impedance match.
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Example 1: Quarter-wave matching of resistive loads:

Consider a TL with ZL = 25 Ω and Rg = Zo = 50 Ω. Since ZL #= Zo the load is
unmatched and the VSWR>1.

To reduce the VSWR on the line connected to the generator to unity, we can insert
a quarter-wave transformer right after ZL — i.e., at d1 = 0 in the circuit
shown in the margin — with a characteristic impedance

Zq =
√

25 × 50 =
√

1250 = 35.35 Ω.

The impedance at the input terminals of the quarter-wave transformer (on the left)
is then Zo, i.e., 50 Ω, implying a perfect impedance match.

• Quarter-wave matching illustrated above is a very commonly used match-
ing technique.

• It is a straightforward application of the quarter-wave transformer impedance
formula

Zin =
Z2

q

ZL

for a transformer with characteristic impedance Zq.
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Note that:

z(d1) = z(dmax) = VSWR ≈ 2.62

as marked on the SC.
Also

dmax ≈ 0.088λ

since, as marked on the SC,

the angle of ΓL is 0.088λ.

Example 2: Quarter-wave matching of reactive loads:

Consider a TL with ZL = 50 + j50 Ω and Rg = Zo = 50 Ω. Since ZL #= Zo the load
is unmatched and the VSWR>1.

We cannot insert the quarter-wave transformer right after the load because then we
would need a complex valued Zq implying a lossy matching network.

Instead, we insert a quarter wave transformer a distance d1 to the left of ZL,
where d1 is selected, using a SC, to have a purely resistive Z(d1). In that case,
the quarter-wave transformer impedance formula

Zq =
√

Z(d1) × 50

yields a real valued Zq as needed. This procedure leads to having d1 = dmax or
d1 = dmin corresponding to the positions of voltage maxima and minima on the
line.

As shown in the margin,

Z(d1) = 50(2.62 + j0) = 131 Ω.

for
d1 ≈ 0.250λ− 0.162λ = 0.088λ

is a suitable choice for quarter-wave matching. In that case we need

Zq =
√

131 × 50 = 50 ×
√

2.62Ω

for the quarter wave transformer in order match to load to a line with Zo = 50 Ω.
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Example 3: Single-stub tuning:

Consider a TL with ZL = 100− j50 Ω and Rg = Zo = 50 Ω. Since ZL #= Zo the load
is unmatched and the VSWR>1.

We will insert a shorted-stub a distance d1 to the left of ZL in parallel with the line
to achieve an impedance match.

Distance d1 will be selected, using a SC, to have a normalized admittance of

y(d1) = 1 + jb

so that a stub, with a normalized input admittance

ystub = −jb,

can be added in parallel to have a combined admittance of

y(d1) + ystub = 1 + j0

and achieve a perfect impedance match (i.e., VSWR=1).

In specific
zL =

ZL

Zo
= 2 − j1 and yL =

1

zL
= 0.4 + j0.2

as shown on the SC on the top in the margin. We rotate clockwise on the SC by
an amount corresponding to d1 to obtain

y(d1) = 1 + j1

on the “g = 1” or “y = 1 + jb” circle as shown in the bottom SC. From the
amount of rotation we determine

d1 ≈ 0.162λ− 0.037λ = 0.125λ.
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The required input impedance of the shorted stub to achieve

y(d1) + ystub = 1 + j0

is
ystub = −1j.

To achieve this input admittance the required stub length is

ls =
λ

8
= 0.125λ

as determined from the SC — start at y = ∞ point on the SC on the far right
(corresponding to the short termination), and then rotate clockwise (toward the
generator) until the normalized admittance reads −j1; the amount of rotation
indicates the required ls.

• Another matching technique called double-stub tuning uses two
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shorted stubs of lengths l1 and l2 located at fixed values of d1 and d2.

– Typically d1 is zero or λ
4 , and

– d2 = d1 + 3λ
8 .

Vary l1 and l2 until VSWR is reduced to 1 near the generator end.

The advantage of double-stub tuning is avoiding changes of stub loca-
tions when ZL is changed. It’s implementation on a SC is considerably
more complicated than single-stub tuning.
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