## 37 Smith Chart and impedance matching

- In lossless TL circuits the average power input $P_{i n}$ at the generator end precisely matches the average power delivered to the load, $P_{L}$.
In fact, $P_{i n}$ and $P_{L}$ also match the average power $P(d)$ transported on the line at an arbitrary $d$.

- We have in general

$$
\begin{aligned}
P(d) & =\frac{1}{2} \operatorname{Re}\left\{V(d) I^{*}(d)\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{\left(V^{+} e^{j \beta d}+V^{-} e^{-j \beta d}\right)\left(\frac{V^{+} e^{j \beta d}-V^{-} e^{-j \beta d}}{Z_{o}}\right)^{*}\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{\frac{\left|V^{+}\right|^{2}}{Z_{o}}-\frac{\left|V^{-}\right|^{2}}{Z_{o}}+\frac{V^{-} V^{+*} e^{-j 2 \beta d}-\left(V^{-} V^{+*} e^{-j 2 \beta d}\right)^{*}}{Z_{o}}\right\} \\
& =\frac{\left|V^{+}\right|^{2}}{2 Z_{o}}-\frac{\left|V^{-}\right|^{2}}{2 Z_{o}} .
\end{aligned}
$$

Power tx'ed toward the load:

$$
\frac{\left|V^{+}\right|^{2}}{2 Z_{o}}
$$

Power tx'ed toward the generator:

$$
\frac{\left|V^{-}\right|^{2}}{2 Z_{o}}
$$

Power reflection coefficient:

$$
\left|\Gamma_{L}\right|^{2}
$$

Power transmission coeff.:

$$
1-\left|\Gamma_{L}\right|^{2}
$$

- In TL circuits with load impedances $Z_{L}$ unmatched to the characteristic impedance $Z_{o}$, the reflected power

$$
\frac{\left|V^{+}\right|^{2}}{2 Z_{o}}\left|\Gamma_{L}\right|^{2}
$$

will be non-zero and the VSWR $>1$.


This a condition not favored by practical signal generators used in TL circuits.

- Most generators are designed (in their biasing arrangements) to operate in circuits with low VSWR (close to unity), requiring $Z_{\text {in }}$ closely matched to $R_{g}$, most frequently $50 \Omega$, an optimal characteristic impedance value for coax-lines (when line losses are taken into account).
- Thus a standard procedure is to use TL's with $Z_{o}=R_{g}$, and utilize a lossless impedance matching network on the TL if the load impedance $Z_{L} \neq Z_{o}$.
- This practice is called impedance matching.

Impedance matching achieves VSWR $=1$ between the generator and the matching network inserted at a location between the load and the generator.

- The inserted network should be designed to yield an input impedance equal $Z_{o}$ at its input terminals.

The following examples illustrate different ways of achieving an impedance match.

## Example 1: Quarter-wave matching of resistive loads:

Consider a TL with $Z_{L}=25 \Omega$ and $R_{g}=Z_{o}=50 \Omega$. Since $Z_{L} \neq Z_{o}$ the load is
 unmatched and the VSWR $>1$.

To reduce the VSWR on the line connected to the generator to unity, we can insert a quarter-wave transformer right after $Z_{L}$ - i.e., at $d_{1}=0$ in the circuit shown in the margin - with a characteristic impedance

$$
Z_{q}=\sqrt{25 \times 50}=\sqrt{1250}=35.35 \Omega .
$$

The impedance at the input terminals of the quarter-wave transformer (on the left) is then $Z_{o}$, i.e., $50 \Omega$, implying a perfect impedance match.

- Quarter-wave matching illustrated above is a very commonly used matching technique.
- It is a straightforward application of the quarter-wave transformer impedance formula

$$
Z_{i n}=\frac{Z_{q}^{2}}{Z_{L}}
$$

for a transformer with characteristic impedance $Z_{q}$.

## Example 2: Quarter-wave matching of reactive loads:

Consider a TL with $Z_{L}=50+j 50 \Omega$ and $R_{g}=Z_{o}=50 \Omega$. Since $Z_{L} \neq Z_{o}$ the load is unmatched and the VSWR $>1$.

We cannot insert the quarter-wave transformer right after the load because then we would need a complex valued $Z_{q}$ implying a lossy matching network.

Instead, we insert a quarter wave transformer a distance $d_{1}$ to the left of $Z_{L}$, where $d_{1}$ is selected, using a SC , to have a purely resistive $Z\left(d_{1}\right)$. In that case, the quarter-wave transformer impedance formula

$$
Z_{q}=\sqrt{Z\left(d_{1}\right) \times 50}
$$

yields a real valued $Z_{q}$ as needed. This procedure leads to having $d_{1}=d_{\text {max }}$ or $d_{1}=d_{\min }$ corresponding to the positions of voltage maxima and minima on the line.

As shown in the margin,

$$
Z\left(d_{1}\right)=50(2.62+j 0)=131 \Omega .
$$

for

$$
d_{1} \approx 0.250 \lambda-0.162 \lambda=0.088 \lambda
$$

is a suitable choice for quarter-wave matching. In that case we need

$$
Z_{q}=\sqrt{131 \times 50}=50 \times \sqrt{2.62} \Omega
$$

for the quarter wave transformer in order match to load to a line with $Z_{o}=50 \Omega$.


## Note that:

$z\left(d_{1}\right)=z\left(d_{\text {max }}\right)=\mathbf{V S W R} \approx 2.62$
as marked on the SC.
Also

$$
d_{\max } \approx 0.088 \lambda
$$

since, as marked on the SC,
the angle of $\Gamma_{L}$ is $0.088 \lambda$.

## Example 3: Single-stub tuning:

Consider a TL with $Z_{L}=100-j 50 \Omega$ and $R_{g}=Z_{o}=50 \Omega$. Since $Z_{L} \neq Z_{o}$ the load is unmatched and the VSWR $>1$.

We will insert a shorted-stub a distance $d_{1}$ to the left of $Z_{L}$ in parallel with the line to achieve an impedance match.

Distance $d_{1}$ will be selected, using a SC, to have a normalized admittance of

$$
y\left(d_{1}\right)=1+j b
$$

so that a stub, with a normalized input admittance

$$
y_{s t u b}=-j b,
$$

can be added in parallel to have a combined admittance of

$$
y\left(d_{1}\right)+y_{\text {stub }}=1+j 0
$$

and achieve a perfect impedance match (i.e., VSWR=1).
In specific

$$
z_{L}=\frac{Z_{L}}{Z_{o}}=2-j 1 \text { and } y_{L}=\frac{1}{z_{L}}=0.4+j 0.2
$$

as shown on the SC on the top in the margin. We rotate clockwise on the SC by an amount corresponding to $d_{1}$ to obtain

$$
y\left(d_{1}\right)=1+j 1
$$

on the " $g=1$ " or " $y=1+j b$ " circle as shown in the bottom SC. From the amount of rotation we determine

$$
d_{1} \approx 0.162 \lambda-0.037 \lambda=0.125 \lambda .
$$



The required input impedance of the shorted stub to achieve

$$
y\left(d_{1}\right)+y_{\text {stub }}=1+j 0
$$

is

$$
y_{s t u b}=-1 j .
$$

To achieve this input admittance the required stub length is

$$
l_{s}=\frac{\lambda}{8}=0.125 \lambda
$$

as determined from the SC - start at $y=\infty$ point on the SC on the far right (corresponding to the short termination), and then rotate clockwise (toward the generator) until the normalized admittance reads $-j 1$; the amount of rotation indicates the required $l_{s}$.

- Another matching technique called double-stub tuning uses two shorted stubs of lengths $l_{1}$ and $l_{2}$ located at fixed values of $d_{1}$ and $d_{2}$.
- Typically $d_{1}$ is zero or $\frac{\lambda}{4}$, and
$-d_{2}=d_{1}+3 \frac{\lambda}{8}$.
Vary $l_{1}$ and $l_{2}$ until VSWR is reduced to 1 near the generator end.
The advantage of double-stub tuning is avoiding changes of stub locations when $Z_{L}$ is changed. It's implementation on a SC is considerably more complicated than single-stub tuning.

