
39 Lossy lines
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• Lossless TL’s we have been studying so far are idealizations of real TL’s
which are invariably lossy.

– Here, we are making reference to Ohmic energy losses in the
conducting wires of the TL, as well as to losses in the imperfect
dielectric separating the two conductors.

• The effect of wire losses in TL’s is modelled by adding a ∆zR resis-
tance in series with ∆zL inductor in the equivalent circuit model of an
infinitesimal (∆z ! λ) TL section as shown in the margin.

• In addition, a shunt conductance ∆zG in parallel with capacitance ∆zC
accounts in the lossy model for dielectric losses. Using perturbation theory, it can

be shown that for a coax of inner
and outer radii a and b,

R =

√
fµ

πσ
(
1
a

+
1
b
),

while for a parallel-plate transmis-
sion line of width W ,

R =
4π

W

√
fµ

πσ
,

in terms of conductivity σ and per-

meability µ of the T.L. conductors.

• While the phasor form of telegrapher’s equations for a lossless TL is

−∂V

∂z
= jωLI and − ∂I

∂z
= jωCV,

for lossy lines — where impedance per unit length jωL must be replaced
by jωL + R and conductance per unit length jωC by jωC + G — the
equations take the form

−∂V

∂z
= (jωL + R)I and − ∂I

∂z
= (jωC + G)V.
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• We will next show that

1. lossless line solutions can be readily modified to account for loss
effects introduced by Ohmic energy losses in R and G,

2. lossless line results we have learned up till now are by and large
valid even on lossy lines provided that

(a) frequency ω is sufficiently large, and
(b) voltage and current solutions V ±e±jβd and V ±

±Zo
e±jβd are mod-

ified by multiplying an attenuation term e±αd which only mat-
ters in practice when d # λ.

• Note that lossless line solutions of telegrapher’s equations can be re-
stated as

V = V ±e±γd and I =
V ±

±Zo
e±γd,

where

γ = jβ = jω
√
LC =

√
(jωL)(jωC) and Zo =

√
L
C =

√
jωL
jωC .

– Replacing jωL by jωL + R, and jωC by jωC + G, we obtain

γ =
√

(jωL + R)(jωC + G) and Zo =

√
jωL + R
jωC + G

in the lossy case.
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While waves governed by lossy γ and Zo (see margin) can exhibit substan-
tially different beavior than the lossless waves (examined in the previous
sections), at high frequencies the wave properties are reasonably similar as
alluded in item (2) above. We next examine this simplified high-frequency
limit.

γ =
√

(jωL + R)(jωC + G)

Zo =

√
jωL + R
jωC + G

• At high frequencies ω, such that ωL #R and ωC # G, we have

– characteristic impedance

Zo =

√
jωL + R
jωC + G ≈

√
L
C

just as in the lossless case1, and
– complex propagation constant

γ =
√

(jωL + R)(jωC + G) = jω
√
LC

√

1 +
R

jωL

√

1 +
G

jωC

≈ jω
√
LC(1 +

R
j2ωL)(1 +

G
j2ωC ) ≈ jω

√
LC +

1

2
(
R
Zo

+ GZo)

= jβ + α

with

β ≈ ω
√
LC and α ≈ β(

R
2ωL +

G
2ωC ) =

1

2
(
R
Zo

+ GZo).

1In fact Zo =
√

L
C is exact even for a lossy line if L

R = C
G .
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• Note that β = 2π
λ is the same as in the lossless case, and since

α ≈ β(
R

2ωL
+

G
2ωC

) ! β,

the “penetration depth” δ ≡ 1
α of voltage and current waves on the TL

is much longer than a wavelength λ = 2π
β in this regime.

In summary, in the high-frequency regime, characteristic impedance Zo

and wavenumber β are (practically) the same as they are on lossless lines,
but signals do attenuate by a factor e±αd which should not be (and cannot
be) neglected over long distances d exceeding many wavelengths λ.

• At lower frequencies where the above approximations cannot be justi-
fied, a more careful analysis of lossy line equations is warranted.

• Finally, for an air-filled coax with inner and outer radii a and b, it can
be shown that the attenuation constant

α =
1

2

R
Zo

=
1

2

√
fµo
πσ

1
b(1 + b

a)
ηo
2π ln( b

a)
,

which minimizes, at a fixed outer radius b, for b
a ≈ 3.6, which in turn

results in an “optimal” characteristic impedance of

Zo =
ηo

2π
ln(

b

a
) = 60 ln(

b

a
) Ω ≈ 75 Ω

for the same coax. Note that this result is independent of σ, the con-
ductivity of inner and outer conductors of the coax.
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– For a dielectric filled coax having ε = 9
4εo — implying vp = 2

3c =
2×108 m/s — the same ratio b

a ≈ 3.6 of outer and inner conductor
radii leads to Zo ≈ 50 Ω, the most common Zo encountered in
practical applications.

– The above result should also explain why having a thicker coax —
larger b — is better when losses are a concern.
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