
ECE 350 Lecture Notes — Summer 10/11, Erhan Kudeki Maxwell’s equations:

∇ · E =
ρ

εo
∇ ·B = 0

∇×E = −∂B

∂t

∇×B = µoJ+ µoεo
∂E

∂t
.

such that

F = q(E+ v ×B),

with

µo ≡ 4π × 10−7 H
m

,

and

εo =
1

µoc2
≈ 1

36π × 109
F
m

,

in mksA units, where

c =
1

√
µoεo

≈ 3× 108
m
s

is the speed of light in free space.

(In Gaussian-cgs units B
c is used

in place of B above, while εo = 1
4π

and µo = 1
εoc2

= 4π
c2 .)

1 Overview, Maxwell’s equations
• ECE 329 introduced the Maxwell’s equations and examined their

circuit implications (inductance, capacitance) and TEM plane-wave so-
lutions in homogeneous media and on “two-wire” transmission lines.

• In ECE 350 we continue our study of the solutions and applications
of Maxwell’s equations with a focus on:

1. Radiation of spherical TEM waves from practical compact an-
tennas (e.g., used in cell phones and wireless links).

2. Propagation, reflection, and interference of TEM waves in 3D
geometries.

3. Dispersion effects in frequency dependent propagation media.
4. Guided waves in TEM, TE, and TM modes.
5. Fields and fluctuations in enclosed cavities.
6. Antenna reception and link budgets in communication applica-

tions.

ECE 350 completes the introductory description of electromagnetic (EM)
effects in our curriculum and prepares the student for specialization courses
in EM (ECE 447, 452, 453, 454, 455, 457, 458, etc.) and applications.
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Review:
!
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#

$

Maxwell’s Equations:

∇ ·D = ρ Gauss’s law
∇ ·B = 0

∇×E = −∂B

∂t
Faraday’s law

∇×H = J +
∂D

∂t
Ampere’s law

where ⇒

!

"

#

$

Microscopic applications:

• ρ and J describe compact (pointlike)
sources,

• D = εoE and B = µoH

Macroscopic applications:

• ρ and J describe smooth sources com-
posed of free charge carriers,

• D = εE and B = µH

specified in the in frequency domain
with ω dependent

– permittivity ε and
– permeability µ.

• Fields E and B determine how a “test charge” q with mass m, position
r, and velocity v ≡ ṙ = dr

dt accelerates in accordance with Lorentz
force

F = q(E + v ×B)

and Newton’s 2nd law
F =

d

dt
mv.
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Maxwell’s Equations:

∇ ·D = ρ

∇ ·B = 0

∇× E = −∂B

∂t

∇×H = J +
∂D

∂t

!

"

#
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Boundary Conditions:

n̂ · [D+ −D−] = ρs
n̂ · [B+ −B−] = 0

n̂× [E+ − E−] = 0

n̂× [H+ −H−] = Js

where n̂ is a unit normal to the
boundary surface pointing from −
to + side.

n̂
D+

D−
w

Units in mksA sys-
tem:

• q[=]C=sA,

• ρ[=]C/m3,

• J[=]A/m2,

• E[=]N/C=V/m,

• D[=]C/m2[=]ρs,

• B[=]V.s/m2

=Wb/m2=T,

• H[=]A/m[=]Js

where
C, N, V, Wb, and T
are abbreviations for
Coulombs, Newtons, Volts,
Webers , and Teslas,
respectively.

Charge q is quantized in units of
e = 1.602× 10−19 C,

a relativistic invariant.

• Note: the same units for

– Displacement D and surface charge density ρs,
– Magnetic field intensity H and surface current density Js.

• In right-handed Cartesian coordinates div, grad, and curl are pro-
duced by applying the del operator

∇ ≡ (
∂

∂x
,
∂

∂y
,
∂

∂z
) = x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

on vector or scalar fields as appropriate.
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• Vectors and vector functions can be expressed in terms of mutually
orthogonal unit vectors x̂, ŷ, and ẑ as in

x

y

z

x̂

ŷ
ẑ

r = (x, y, z)

UNIT VECTORS AND A POSITION
VECTOR IN RIGHT-HANDED
CARETESIAN COORDINATES 

= xx̂ + yŷ + zẑ

r = (x, y, z) = xx̂+yŷ+zẑ and E = (Ex,Ey, Ez) = Exx̂+Eyŷ+Ezẑ etc.,

where

– |r| ≡
√
x2 + y2 + z2 and |E| ≡

√
E2

x + E2
y + E2

z etc., are vector
magnitudes,

Right handed con-
vention: cross product vec-
tor points in the direction indi-
cated by the thumb of your right
hand when you rotate your fin-
gers from vector A toward vector
B through angle θ you decide to
use.

A = |A|â

B = |B|b̂

|B| sin θ

|B| cos θ

θ

A · B = |A||B| cos θ

A× B = |A||B| sin θâ × n̂

â
n̂

CROSS PRODUCT: right-handed 
perpendicular area vector of 
the parallelogram formed
by co-planar vectors

DOT PRODUCT:product of 
projected vector lengths

– r̂ ≡ r
|r| and Ê ≡ E

|E| etc., are associated unit vectors, with

!
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#

$

Dot products:

• r̂ · r̂ = 1, Ê · Ê = 1, x̂ · x̂ = 1,
etc.,

but

• x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0.

Dot product A · B is a scalar which
is the product of |A| and |B| and the
cosine of angle θ between A and B.

Dot product is zero when angle θ is
90◦, as in the case of x̂ and ŷ, etc.

!

"

#

$

Cross products:

• x̂× ŷ = ẑ,
ŷ × ẑ = x̂,
ẑ × x̂ = ŷ in a right-handed
system.

Cross product A×B is a vector with
a magnitude the product of |A| and
|B| and the sine of angle θ between A
and B and a direction orthogonal to
A and B in a right-handed sense.

Cross product is zero when the vectors
cross multiplied are collinear (θ = 0◦)
or anti-linear (θ = 180◦).
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Having three non-collinear
force measurements Fi cor-
responding to three distinct
test particle velocities vi is
sufficient to determine the
fields E and B at any location
in space produced by distant
sources as illustrated by this
example.

x

y

z

F1 = 2x̂

v1 = 0

x

y

z

F2 = 2x̂ − 6ẑ

v2 = 2ŷ

x

y

z

F3 = 2x̂ + 9ŷv3 = 3ẑ

Example 1: A particle with charge q = 1 C passing through the origin
r = (x, y, z) = 0 of the lab frame is observed to accelerate with forces

F1 = 2x̂, F2 = 2x̂− 6ẑ, F3 = 2x̂+ 9ŷN

when the velocity of the particle is

v1 = 0, v2 = 2ŷ, v3 = 3ẑ
m
s
,

in turns. Use the Lorentz force equation

F = q(E+ v ×B)

to determine the fields E and B at the origin.

Solution: Using the Lorentz force formula first with F = F1 and v =v1, we note that

2x̂ = (1)(E+ 0×B),

which implies that
E = 2x̂

N
C

= 2x̂
V
m
.

Next, we use
v ×B =

F

q
−E =

F

q
− 2x̂

with F2 = 2x̂− 6ẑ and v2 = 2ŷ, as well as E = 2x̂ V/m, to obtain

2ŷ ×B = −6ẑ ⇒ ŷ ×B = −3ẑ;

likewise, with F3 = 2x̂+ 9ŷ and v3 = 3ẑ,

3ẑ ×B = 9ŷ ⇒ ẑ ×B = 3ŷ.
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Substitute B = Bxx̂ +Byŷ +Bz ẑ in above relations to obtain

ŷ × (Bxx̂+ Byŷ + Bzẑ) = −Bxẑ +Bzx̂ = −3ẑ

and
ẑ × (Bxx̂+Byŷ + Bzẑ) = Bxŷ − Byx̂ = 3ŷ.

Matching the coefficients of x̂, ŷ, and ẑ in each of these relations we find that

Bx = 3
Wb
m2

, and By = Bz = 0.

Hence, vector
B = 3x̂

Wb
m2

.
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Conservation laws
• In HW1 you are asked to derive the continuity equation

∂ρ

∂t
+∇ · J = 0

by taking the divergence of Ampere’s Law and combining it with Gauss’
Law.

– This equation expresses the conservation of electrical charge by
putting a constraint on charge density ρ and current density J as
it was first explained in ECE 329 (this is just a review, recall).

• Another conservation law derived in ECE 329 from Maxwell’s equations
was Poynting Theorem, namely

∂w

∂t
+∇ · S = −J · E,

where
w =

1

2
εoE ·E +

1

2
µoH ·H EM energy density,

S ≡ E×H Poynting vector,

−J · E power produced per unit volume,

– expressing the conservation of electromagnetic energy.
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• All conservation laws found in nature can be expressed mathematically
in the forms given above in terms of a time-derivative of the volumetric
density of the conserved quantity, the divergence of the flux of the
conserved quantity (the so-called transport term), and a production
term on the right (zero in case of charge conservation).

• The above conservation laws account for the increase/decrease of the
conserved quantity density in terms of local transport and production
effects. Hence charge conservation, for instance, is a local conservation
principle.

– If charge density decreases at a location, it will increase at a neigh-
boring location because of local transport between the locations
— charge cannot disappear in one volume and appear simultane-
ously in another volume (satisfying a so-called global conservation
principle) without having traveled between the volumes.

– All conservation laws observed in nature are local (as opposed to
global) in the sense just described — the proof for this very broad
statement can be based on the principle of relativity1.

1Note that if charge could travel between the volumes with an infinite speed, then “global conservation”
as opposed to “local conservation” could have been a viable idea — however no object can travel faster
than light according to the principle of relativity and thus conservation laws have to be necessarily local
and have mathematical expressions similar to those given in the continuity equation. A more general (but
simple) proof of the local nature of all conservation laws (based on special relativity) is given by Feynman
(see “The character of physical law”, 1965, MIT Press).
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