
2 Static fields and potentials
Static fields

E = E(r), D = D(r), B = B(r), H = H(r)

independent of the time variable t are produced by static source distributions

ρ = ρ(r) and J = J(r)

which only depend on position vector r = (x, y, z). In case of static fields
Maxwell’s equations simplify and decouple as
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Time-dependent:

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B

∂t

∇×H = J +
∂D

∂t

⇒
∂
∂t = 0
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Electrostatics: (curl-free)

∇ ·D = ρ

∇× E = 0

D = εoE

Magnetostatics: (divergence-free, solenoidal)

∇ ·B = 0

∇×H = J

B = µoH
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Important vector identities:

• ∇× (∇V )=0

• ∇ · (∇×A) = 0

• ∇×∇×A = ∇(∇ ·A)−∇2A.
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Electrostatics: (curl-free)

∇ ·D = ρ

∇×E = 0

D = εoE

Since all curl-free fields can be expressed in
terms of a scalar gradient, we choose

E = −∇V,

where
V = V (x, y, z)

is called electrostatic potential.
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Magnetostatics: (divergence-free)

∇ ·B = 0

∇×H = J

B = µoH

Since all divergence-free fields can be ex-
pressed in terms of a curl, we choose

B = ∇×A

where
A = A(x, y, z)

is called vector potential.
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Electrostatics: (curl-free)

∇ ·D = ρ

∇×E = 0

D = εoE

such that
E = −∇V.

Electrostatic potential

V = V (x, y, z)

signifies the kinetic energy available (i.e.,
stored potential energy) — total energy be-
ing 1

2mv · v + qV — per unit charge in a
static field measured from a convenient refer-
ence point (ground).
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Magnetostatics: (divergence-free)

∇ ·B = 0

∇×H = J

B = µoH

such that
B = ∇×A.

If we apply the constraint ∇·A = 0 — known
as Coulomb gauge and discussed in more
detail next lecture — then the vector po-
tential

A = A(x, y, z)

can be interpreted as kinetic momentum mv
available — total (canonical) momentum be-
ing mv + qA — per unit charge in a static
field.

• In general, given V and A, it is easy to compute E and B.

• How do we get V and A (and thus E and B) from ρ and J?
Before addressing this question in full generality let’s review the electric
field E and the electrostatic potential V of a stationary point charge.
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Coulomb’s law specifies the electric field of a stationary charge Q at the
origin as

E(r) =
Q

4πεo|r|2
r̂

as a function of position vector r = (x, y, z) with a magnitude

|r| ≡ r =
√
x2 + y2 + z2 and direction unit vector r̂ =

r

r
.

• This Coulomb field E(r) will exert a force F = qE(r) on any stationary
“test charge” q brought within distance r of Q (see margin).

r = |r|r̂
Q

q

r̂

Force exerted by Q on q:

F = qE

E =
Q

4πεo|r|2
r̂

with electric field

With multiple Q’s superpose
multiple E’s

x
y

z

• The associated electrostatic potential is

V (r) =
Q

4πεo|r|

with an implied ground for |r| → ∞.

Verification: this can be done in two ways,

1. by computing −∇V ≡ E(r), or
2. by computing the line integral

∫∞
r E · dl ≡ V (r) along any path.

In HW 1 we will ask you to verify the potential of the point charge
using both methods.
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Poisson’s equations:
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Electrostatics: Since

∇× E = 0 ⇒ E = −∇V,

we have

D = εoE and ∇ ·D = ρ

implying

∇ · (−εo∇V ) = ρ ⇒ ∇2V = − ρ

εo
.
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Magnetostatics: Since

∇ ·B = 0 ⇒ B = ∇×A,

we have

B = µoH and ∇×H = J

implying

∇× (µ−1
o ∇×A) = J ⇒ ∇2A = −µoJ

after using

∇ ·A = 0 (Coulomb gauge)

in the expansion of

∇×∇×A = ∇(∇ ·A)−∇2A.

• We can get V and A from ρ and J by solving the Poisson’s equations

∇2V = − ρ

εo
and ∇2A = −µoJ

where

∇2 ≡ ∇ ·∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
is Laplacian operator.
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The solution of electrostatic Poisson’s equation

∇2V = − ρ

εo

with an arbitrary ρ(r) existing over any finite region in space can be obtained
as

x

y

z
r− r′

ρ(r′)

r′r

O

The general solution

V (x, y, z)

is obtained by performing a
3D volume integral of

ρ(x′, y′, z′)

4πεo|(x, y, z)− (x′, y′, z′)|

over the primed coordinates.
In abbreviated notation

d3r′ ≡ dx′dy′dz′

denotes an infinitesimal vol-

ume of the primed coordinate

system.

V (r) =

∫
ρ(r′)

4πεo|r− r′|d
3r′

where d3r′ ≡ dx′dy′dz′ and the 3D volume integral on the right over the
primed coordinates is performed over the entire region where the charge
density is non-zero (see margin).

• Verification: The solution above can be verified by combining a num-
ber of results we have seen earlier on:

1. Electric potential V (r) of a point charge Q at the origin is

V (r) =
Q

4πεo|r|
.

Clearly, this singular result is a solution of Poisson’s equation
above for a charge density input of

ρ(r) = Qδ(r).

(a) Using ECE 210-like terminology and notation, the above re-
sult can be represented as

δ(r) → Poisson’s Eqn → 1

4πεo|r|
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identifying the output on the right as a 3D “impulse response”
of the linear and shift-invariant (LSI) system represented
by the Poisson’s equation.

(b) Because of shift-invariance, we have

δ(r− r′) → Poisson’s Eqn → 1

4πεo|r− r′|
,

meaning that a shifted impulse causes a shifted impulse re-
sponse.

The shifted impulse response is usually called “Green’s
function” G(r, r′) in EM theory.

(c) Because of linearity, we are allowed to use superpositioning
arguments like
∫

ρ(r′)δ(r−r′)d3r′ = ρ(r) → Poisson’s Eqn →
∫

ρ(r′)
1

4πεo|r− r′|d
3r′ = V (r),

which concludes our verification. Note how we made use of
the sifting property of the impulse (from ECE 210) in above
calculation.
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Solutions of Poisson’s equations:

x

y

z
r− r′

ρ(r′)

r′r

O

J(r′)
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Electrostatics:

∇2V = − ρ

εo

implies a general solution

V (r) =

∫
ρ(r′)

4πεo|r− r′|
d3r′.
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Magnetostatics:

∇2A = −µoJ

implies a general solution

A(r) =

∫
µoJ(r′)

4π|r− r′|d
3r′.

These results indicate that potentials

V (r) and A(r)

are appropriately weighted sums of

ρ(r) and J(r)

in convolution-like 3D space integrals.
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