
4 Time harmonic sources and retarded poten-

tials

• The solution of forced wave equation

∇2V − µoεo
∂2V

∂t2
= −

ρ

εo

for scalar potential V is most conveniently obtained in the frequency
domain:

Consider a time-harmonic forcing function ρ and a time-harmonic re-
sponse V expressed as

ρ(r, t) = Re{ρ̃(r)ejωt} and V (r, t) = Re{Ṽ (r)ejωt}

in terms of phasors
ρ̃(r) and Ṽ (r).

Then, the above wave equation transforms — upon replacing ∂
∂t by jω

— into phasor form as

∇2Ṽ + µoεoω
2Ṽ = −

ρ̃

εo
.

• For ω = 0 the above equation reduces to Poisson’s equation, which we
know has, with an impulse forcing

ρ̃(r) = δ(r), an impulse response solution Ṽ (r) =
1

4πεo|r|
≡

1

4πεor
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where r ≡ |r| denotes the distance of the observing point r from the
impulse point located at the origin.

– Note that this impulse response ∝ 1/r is symmetric with respect
to the origin just like the impulse input δ(r). Note that by substituting

the source function δ(r) and
response function 1

4πεor
back

into the Poisson’s equation
we obtain an equality

∇2

(

1

|r|

)

= −4πδ(r),

which is a useful vector iden-

tity.

We now postulate and subsequently prove that for ω ≥ 0, the impulse re-
sponse solution of the forced wave equation — i.e., with forcing function
ρ̃(r) = δ(r) — is

Ṽ (r) =
e−jk|r|

4πεo|r|
with k ≡ ω

√
µoεo =

ω

c
.

Proof: For ρ̃(r) = δ(r) the source of the forced wave equation (for an
arbitrary ω) is symmetric with respect to the origin, implying that the corre-
sponding solution Ṽ (r) should also have the same type of symmetry. Then,
with no loss of generality, we can claim a solution for the case ρ̃(r) = δ(r) of
the form

Ṽ (r) =
f(r)

r
where

• f(r) = 1
4πεo

for ω = 0, and

• f(r) is to be determined for an arbitrary ω as follows:
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– Substituting f(r)/r for Ṽ (r) and δ(r) for ρ(r) in the forced wave
equation (see margin), we obtain Forced wave eqn

(phasor form):

∇2Ṽ + k2Ṽ = −
ρ̃

εo

with

k = ω
√
µoεo =

ω

c
.

∇2(
f(r)

r
) + k2

f(r)

r
= −

δ(r)

εo

which reduces, for r '= 0, to

∇2(
f(r)

r
) + k2

f(r)

r
= 0.

– Since (as shown in HW) we have, by using spherical coordinates
(reviewed next lecture),

∇2(
f(r)

r
) =

1

r

∂2f

∂r2
,

it follows that we have, for r '= 0,

1

r
(
∂2f

∂r2
+ k2f) = 0,

which is in turn satisfied by

f(r) = ge∓jkr = ge∓jωr/c

with an arbitrary constant g.

– Finally, the constraint that f(r) = 1/4πεo for ω = 0 indicates that

g =
1

4πεo
,
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and thus The choice −jkr leads to so-
called retarded solution of
the wave equation. The al-
ternative choice +jkr is not
used because it leads to an
advanced solution that de-
pends on future values of the
charge distribution not avail-
able in practice (this causal-
ity constaint is further dis-
cussed later in this lecture).

Note that k is another sym-
bol for wavenumber β. In
this and higher level courses
in EM and signal processing
k is favored over β (for a good
number of reasons which will
become apparent as we learn
more).

f(r) =
e∓jkr

4πεo
in the solutions f(r)/r of the wave equation with ρ̃(r) = δ(r).

This concludes our proof of the postulated solution

Ṽ (r) =
e−jk|r|

4πεo|r|
with k ≡ ω

√
µoεo =

ω

c

where the sign choice in the exponent favors the physically relevant causal

solution as opposed to the acausal alternative (see discussion below).

For the record, by scaling the result above:
!

"

#

$

For ρ̃(r) = Qδ(r), the causal solution of the
forced wave equation

∇2Ṽ + k2Ṽ = −
ρ̃

εo
,

where k ≡ ω
√
µoεo is the phasor

Ṽ (r) =
Q

4πεo

e−jkr

r
.

!

"

#

$

Likewise, for J̃z(r) = P δ(r), the causal solu-
tion of the forced wave equation

∇2Ãz + k2Ãz = −µoJ̃z,

where k ≡ ω
√
µoεo must be the phasor

Ãz(r) =
µoP

4π

e−jkr

r
,

which describes, with P = I∆z, the vec-
tor potential of the Hertzian dipole defined
in Lecture 6.
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• We can next argue as follows:

δ(r) → Forced Wave Eqn →
e−jk|r|

4πεo|r|

and

δ(r− r
′) → Forced Wave Eqn →

e−jk|r−r′|

4πεo|r− r′|
imply that

∫

ρ̃(r′)δ(r−r
′)d3r′ = ρ̃(r) → Forced Wave Eqn →

∫

ρ̃(r′)e−jk|r−r′|

4πεo|r− r′|
d3r′ = Ṽ (r),

giving us, on the right-hand side, the retarded potential solution in
the frequency domain.

• Finally, inverse Fourier transforming the above result back to time do-
main, we obtain

V (r, t) =

∫

ρ(r′, t− |r−r′|
c )

4πεo|r− r′|
d3r′,

where we made an explicit use of the time-shift property of the Fourier
transform as in

ρ(r′, t−
|r− r′|

c
) ↔ R(r′,ω)e−jω|r−r′|/c ≡ ρ̃(r′)e−jk|r−r′|.
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– Note that V (r, t) is a weighted superposition of the past values of
charge density ρ(r, t) (as opposed to future values) because of our
use of the causal solution1 (as opposed to acausal solution) of the
forced wave equation discussed above. Question: is causality an ad-

ditional postulate on top of
Maxwell’s equations that needs to
be invoked to understand radia-
tion?

Answer: no, not really, we need
to invoke causality at this stage to
pick the relevant root of the solu-
tion for the forced wave equation
simply because we took a short-
cut of using a steady-state solu-
tion based on Fourier transforms
(phasors). Had we solved the
same problem as an initial value
problem (using the Laplace trans-
form), only the retarded potential
solution would have figured in our
answer naturally without having
to invoke a separate causality pos-
tulate — see J. L. Anderson,
“Why we use retarded potentials”,
Am.J. Phys., 60, 465, 1992.

It is useful to stress at this point the relationship between a phasor (of a time
harmonic function) and a Fourier transform (of a time domain function) as
follows:

• A phasor, say, Ṽ (r) is a sample of a Fourier transform function V (r,ω)
at the frequency ω of a time-harmonic function that the phasor repre-
sents.

• Conversely, a Fourier transform V (r,ω) represents a continuous collec-
tion of phasors Ṽ (r) representing time-harmonic functions of all possi-
ble ω.

Based on the above correspondence principle we feel free to switch
between phasor and Fourier transform concepts as convenient.

1This choice is also referred to as Sommerfeld’s radiation condition after Arnold Sommerfeld who also
developed an asymptotic formula that retains the causal solution and rejects the acausal one.
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Having finished the derivation of the retarded potential solution of the
forced wave equation for scalar potential, we can re-state our result, and by
analogy the result for the retarded vector potential as:

!

"

#

$

V (r, t) =

∫

ρ(r′, t− |r−r′|
c )

4πεo|r− r′|
d3r′,

the solution of inhomogeneous wave equation

∇2V − µoεo
∂2V

∂t2
= −

ρ

εo

!

"

#

$

A(r, t) =

∫

µoJ(r′, t− |r−r′|
c )

4π|r− r′|
d3r′,

the solution of inhomogeneous wave equation

∇2
A− µoεo

∂2A

∂t2
= −µoJ

where

c ≡
1

√
µoεo

is the speed of light in free space.

These results indicate that retarded potentials

V (r, t) and A(r, t)

are appropriately weighted and delayed sums of

ρ(r, t) and J(r, t)

in convolution-like 3D space integrals. x

y

z

r− r
′

ρ(r′, t)

r
′

r

O

J(r′, t)
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Next turning our attention to retarded vector potential solutions, we
note that the results stated in time and frequency domains are as follows:

!

"

#

$

Time-domain:

A(r, t) =

∫

µoJ(r′, t− |r−r′|
c )

4π|r− r′|
d3r′,

the solution of the inhomogeneous wave equa-
tion

∇2
A−

1

c2
∂2A

∂t2
= −µoJ.

!

"

#

$

Frequency-domain:

Ã(r) =

∫

µoJ̃(r′)e−jk|r−r′|

4π|r− r′|
d3r′,

the solution of the inhomogeneous wave equa-
tion

∇2
Ã +

ω2

c2
Ã = −µoJ̃.

In the next lecture we will learn how to perform vector calculus operations in
spherical coordinates and then apply the frequency-domain result obtained
above to the calculation of radiation from short current elements.
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