
5 Vector calculus in spherical coordinates
In studies of radiation from compact antennas it is more convenient to use
spherical coordinates instead of the Cartesian coordinates that we are
familiar with. In this lecture we will learn
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1. how to represent vectors and vector fields in spherical coordinates,

2. how to perform div, grad, curl, and Laplacian operations in spherical
coordinates.

• A 3D position vector
r = (x, y, z)

with Cartesian coordinates (x, y, z) is said to have spherical coordinates
(r, θ,φ) where
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length r ≡ |r| =
√
x2 + y2 + z2

zenith angle θ = tan−1

√
x2 + y2

z

azimuth angle φ = tan−1y

x
.
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In terms of spherical coordinates, Cartesian coordi-
nates can be expressed as

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ.

Ratios x/r = sin θ cosφ, y/r = sin θ sinφ, and z/r = cos θ are referred
to as direction cosines as they represent the cosine of the angle between
vector r = (x, y, z) and the x-, y-, and z-axes, respectively.
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• In Cartesian coordinates we have mutually orthogonal unit vectors

x̂, ŷ, ẑ

pointing in the direction of increasing Cartesian coordinates x, y, z,
respectively.
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Unit-vectors r̂, θ̂,and φ̂ shown
in red, green, and blue point
in mutually orthogonal direc-
tions of increasing spherical
coordinates r, θ, and φ, re-
spectively, such that θ̂×φ̂ = r̂.

Note that r̂, θ̂,and φ̂ are local

unit vectors (i.e., coordinate

dependent) unlike the global

unit vectors x̂, ŷ, and ẑ of the

Cartesian coordinate system.

• Likewise, in spherical coordinates we have mutually orthogonal unit
vectors

r̂, θ̂, φ̂

pointing in the direction of increasing coordinates r, θ, φ, respectively.

• However, unlike x̂, ŷ, ẑ, the unit vectors r̂, θ̂, φ̂ are not global —
rather they are local in the sense that their directions depend on the
local coordinates.

– The local nature of r̂, θ̂, φ̂ becomes clear when they are expressed
in terms of the global unit vectors x̂, ŷ, ẑ as follows:

r̂ =
r

r
=

(x, y, z)

r
= x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ

φ̂ =
(−y, x, 0)√
x2 + y2

= −x̂ sinφ + ŷ cosφ

θ̂ = φ̂× r̂ = x̂ cos θ cosφ + ŷ cos θ sinφ− ẑ sin θ

Make sure you understand each of the terms above with reference
to the figure shown in the margin.
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• In Cartesian coordinates we have an infinitesimal volume element
(x, y, z + ∆z)
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Any vector

A(r) = Axx̂+Ay ŷ +Az ẑ,

where Ax, Ay, and Az are the projec-
tions of A(r) on red, green, and blue
arrows aligned with x̂,ŷ, ẑ, respectively.
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Any vector

A(r) = Ar r̂ +Aθ θ̂ +Aφφ̂,

where Ar, Aθ, and Aφ are the projec-

tions of A(r) on red, green, and blue

arrows aligned with r̂,θ̂, φ̂, respectively.

dV = dxdydz

which is used in 3D volume integrals and often denoted as “d3r”.

– Note that dV is the volume of a rectangular box formed by the
intersection of constant coordinate surfaces of two infinitesi-
mally close points having a separation vector

dr = x̂dx + ŷdy + ẑdz.

• Infinitesimal volume element d3r expressed in terms of spherical coor-
dinates and their increments is

dV = (dr) (rdθ) (r sin θdφ) = r2 sin θdrdθdφ.

– Once again dV is the volume of a rectangular box formed by the
intersection of constant coordinate surfaces of two infinitesi-
mally close points having a separation vector

dr = r̂dr + θ̂rdθ + φ̂r sin θdφ.

– Note that in this case constant coordinate surfaces are no longer
planar globally, but over infinitesimal dimensions of dV the sur-
faces will appear locally planar.
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In Cartesian coordinates div, curl,
and grad

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

∇×A =

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣

∇V =
∂V

∂x
x̂ +

∂V

∂y
ŷ +

∂V

∂z
ẑ

are obtained by applying the del operator

∇ ≡ (
∂

∂x
,

∂

∂y
,

∂

∂z
)

“algebraically” to vectors

A = Axx̂ + Ayŷ + Azẑ

and scalars

V (x, y, z)

as indicated above.
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In spherical coordinates div, curl, and grad

∇ ·A =
1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂(sin θAθ)

∂θ
+

1

r sin θ

∂Aφ

∂φ

∇×A =

∣∣∣∣∣∣∣∣∣∣∣

r̂
r2 sin θ

θ̂
r sin θ

φ̂
r

∂
∂r

∂
∂θ

∂
∂φ

Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣∣∣∣

∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂

are obtained for vectors

A = Arr̂ + Aθθ̂ + Aφφ̂

and scalars
V (r, θ,φ)

as indicated above. Note that there is no del operator
that “works algebraically” in spherical coordinates.
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Example 1: Verify the r̂ component of ∇ × A formula in spherical coordinates by
showing that it corresponds to

lim
AC→0

∮
C A · dl

AC

where AC is the enclosed area of contour C orthogonal to r̂ marked in the margin
by blue and green edges.

Solution: In spherical coordinates

∇×A =

∣∣∣∣∣∣∣∣∣∣∣

r̂
r2 sin θ

θ̂
r sin θ

φ̂
r

∂
∂r

∂
∂θ

∂
∂φ

Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣∣∣∣

and, therefore, r̂ component of ∇×A is

(∇×A) · r̂ =
1

r2 sin θ
(

∂

∂θ
r sin θAφ −

∂

∂φ
rAθ) =

1

r sin θ
(

∂

∂θ
sin θAφ −

∂

∂φ
Aθ).

To show that this expression corresponds (as it should by definition) to

lim
AC→0

∮
C A · dl

AC

where circulation path C and enclosed area AC are as described in the question
statement, we first note that

AC ≈ (r sin θdφ)(rdθ)
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to second order in increments dθ and dφ. Also,
∮

C
A · dl = Aθ(r, θ,φ)rdθ + Aφ(r, θ + dθ,φ)r sin(θ + dθ)dφ

−Aθ(r, θ,φ+ dφ)rdθ − Aφ(r, θ,φ)r sin θdφ

starting on the green edge. Thus
∮
C A · dl

AC
=

Aθ(r, θ,φ)− Aθ(r, θ,φ+ dφ)

r sin θdφ

+
Aφ(r, θ + dθ,φ) sin(θ + dθ)− Aφ(r, θ,φ) sin θ

r sin θdθ

which yields in the limit of vanishing dθ and dφ

− 1

r sin θ

∂

∂φ
Aθ +

1

r sin θ

∂

∂θ
sin θAφ ≡ (∇×A) · r̂

as requested.

See Appendix A and B in Rao for a complete coverage of the
derivation of div, grad, curl in spherical coordinates.
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Example 2: Verify the gradient procedure

∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂

in spherical coordinates.

Solution: Independent of the coordinate employed, the total differential dV and the
gradient ∇V of a scalar field V (r) are related by

dV = ∇V · dr.

In the Cartesian coordinate system where V = V (x, y, z), this relation expands as

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz = ∇V · (x̂dx+ ŷdy + ẑdz)

and implies
∇V =

∂V

∂x
x̂+

∂V

∂y
ŷ +

∂V

∂z
ẑ.

Likewise, for spherical coordinates where V = V (r, θ,φ), we have

dV =
∂V

∂r
dr +

∂V

∂θ
dθ +

∂V

∂φ
dφ = ∇V · (r̂dr + θ̂rdθ + φ̂r sin θdφ)

implying that
∇V =

∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂.
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Example 3: Show that the Laplacian of a scalar field V (r, θ,φ) is specified as

∇2V =
1

r2
∂

∂r
(r2

∂V

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂V

∂θ
) +

1

r2 sin2 θ

∂2V

∂φ2
.

Solution: Since the Laplacian is the divergence of a gradient, we start by noting that

∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂.

Applying to this vector the divergence formula

∇ ·∇V =
1

r2
∂(r2(∇V )r)

∂r
+

1

r sin θ

∂(sin θ(∇V )θ)

∂θ
+

1

r sin θ

∂(∇V )φ
∂φ

=
1

r2
∂(r2∂V∂r )

∂r
+

1

r sin θ

∂(sin θ 1
r
∂V
∂θ )

∂θ
+

1

r sin θ

∂( 1
r sin θ

∂V
∂φ )

∂φ

the above result for the Laplacian is readily obtained.
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