
6 Spherical waves
In this lecture we will find out that short-filaments of oscillatory currents
produce uniform spherical waves of vector potential propagating away from
the filament. The relationship between spherical waves of vector potential
and the corresponding electromagnetic wave fields will be examined in the
next lecture.

We recall that time-varying solutions of Maxwell’s equations can be ob-
tained via

B = ∇×A,

where the vector potential A(r, t) is related to time-varying current density
J(r, t) via
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Time-domain:

A(r, t) =

∫
µoJ(r′, t− |r−r′|
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4π|r− r′| d3r′.
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Frequency-domain:

Ã(r) =

∫
µoJ̃(r′)e−jk|r−r′|

4π|r− r′| d3r′,

where
k = ω

√
µoεo.

∆z
x

y

z

θ

φ

r

I(z, t) = Irect(
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) cos(ωt)

Hertzian dipole

• We will next examine the implications of the above results from Lecture
4 for an ẑ directed infinitesimal current filament defined as

I(r, t) =

{
I cos(ωt), for x = 0, y = 0, −∆z

2 < z < ∆z
2

0, otherwise.
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where constant I is specified in units of amperes (A). We can associate
with this infinitesimal current the following current density function

J(r, t) =

{
Iδ(x)δ(y) cos(ωt)ẑ, for − ∆z

2 < z < ∆z
2

0, otherwise.

= Iδ(x)δ(y)rect(
z

∆z
) cos(ωt)ẑ

A
m2

recalling that the dimension of an impulse δ(x) is m−1.
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J(r, t) = Iδ(x)δ(y)rect(
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) cos(ωt)ẑ

• The oscillatory and ẑ directed infinitesimal current filament of a length
∆z can in turn can be represented in terms of a phasor

J̃(r) = Iδ(x)δ(y)rect(
z

∆z
)ẑ

A
m2

.

We can also re-write this as

J̃(r) = I∆z δ(x)δ(y)
rect( z

∆z)

∆z
ẑ

A
m2

in which the ratio with the rectangle in the numerator can be treated
as “δ(z)” provided that

– the width, ∆z, of the rectangle is considered an infinitesimal so
that the ratio

rect( z
∆z)

∆z
represents in effect an infinitely thin and tall function centered
about z = 0 having a unity area underneath.
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• Next we substitute this current density phasor J̃(r) (with ∆z consid-
ered an infinitesimal) into the phasor formula for the retarded vector
potential to obtain
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J̃(r) = I∆zδ(x)δ(y)δ(z)ẑ

Ã(r) =

∫
µoJ̃(r′)e−jk|r−r′|

4π|r− r′| d3r′

J̃(r′)

=

∫ ∫ ∫
µo

︷ ︸︸ ︷
I∆zδ(x′)δ(y′)δ(z′)ẑ e−jk|r−r′|

4π|r− r′| dx′dy′dz′

where the integrations are to be carried over x′, y′, and z′ in the range
−∞ to +∞.

• These are very easy integrals to take because of δ(x′), δ(y′), and δ(z′)
factors in the integrand, and lead to (after replacing all x′, y′, and z′

elsewhere in the integrand by 0)

Ã(r) =
µo

4π
I∆z

e−jkr

r
ẑ,

where r = |r| as usual. Converting this result into time domain by
multiplying it with ejωt and taking the real part of the product we
obtain

A(r, t) =
µo

4π
I∆z

cos(ωt− kr)

r
ẑ.

We have just finished deriving the retarded vector potential solution of an
oscillatory infinitesimal current filament known as the Hertzian dipole.
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Our results indicate that for a Hertzian dipole oriented in ẑ direction, the
vector potential solution
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Frequency-domain:

Ã(r) =
µo

4π
I∆z

e−jkr
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Time-domain:

A(r, t) =
µo

4π
I∆z

cos(ωt− kr)

r
ẑ

is also oriented in the ẑ direction and oscillate in time at the frequency ω
of the oscillating dipole. Note that:

1. These vector potential solutions describe a spherical wave (as opposed
to a plane wave) characterized by spherical surfaces of constant
phase associated with

e−jkr and cos(ωt− kr)

variations in frequency and time domains.
x
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J̃λ =
2π

k

2. Spherical wave solution is uniform in the sense that the vector potential
phasor Ã is constant (in direction and magnitude) on spherical surfaces
of constant phase (in analogy to uniform TEM plane waves of electric
and magnetic fields studies in ECE 329).

3. Clearly, the propagation speed of the spherical wave is

vp =
ω

k
=

ω

ω
√
µoεo

= c.
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4. The spherical wave is also characterized by an oscillation amplitude
that varies as 1

r away from the radiating source

• In the next lecture we will take the curl of this result (using spherical
coordinates operators) to obtain spherical (but non-uniform) waves of
B that accompany the A-waves, and then derive the accompanying
spherical (but non-uniform) E-waves using Ampere’s law.

– We will find out E- and B-waves derived from A-waves are in
general non-uniform and form “beams” of directions along which
field magnitudes |Ẽ| and |B̃| maximize over spherical planes of
constant phase.

– The mathematical description of these beams is provided by the
“gain function” and the “solid angle” of the radiating system to be
defined and explored in Lecture 10.

• In deriving E- and B-waves from A we will not explicitly worry about
V (r, t) and ρ(r, t) that accompanies the Hertzian dipole behavior (since
J contains all information included in ρ variations).

• For completeness sake, however, let us examine what kind of ρ(r, t)
variation should be expected for the Hertzian dipole.

The Hertzian dipole is a hypothetical radiation element defined and intro-
duced above. Its main utility is that it has the simplest radiation properties
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that one could imagine and use as a building block to represent more com-
plicated (and practical rather than hypothetical) radiation elements.

• A Hertzian dipole was defined as a filament of an infinitesimal length
∆z which is carrying a constant (z-independent) current at each instant
of time t.

– Since outside the filament the current vanishes, charge conserva-
tion and the continuity equation

∂ρ

∂t
+∇ · J = 0

demand that there has to be a time-varying charge accumulation
at the two ends of the filament.
Since for a ẑ directed Hertzian dipole, J = ẑJz, we can write the
phasor domain form of the continuity equation as
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J̃z = Iδ(x)δ(y)rect(
z

∆z
)

x

z

ρ̃ = j
I

ω
δ(x)δ(y)
[δ(z + ∆z/2) − δ(z − ∆z/2)]

+ + δ(z + ∆z/2)

−− δ(z − ∆z/2)

Depicted charge density (red)leads
the depicted current density (blue)
profile by a quarter period because
of j term in charge density.

Positive reservoir of charge at z<0
end of the dipole discharges into
the negative reservoir at the other
end causing half a cycle of z-directed
current across the filament.

By the end of half-cycle the top end
is positively charged and the bottom 
end negatively, so a new half-cycle
with motions in the opposite 
direction starts. 

Current

Charge

jωρ̃ +
∂J̃z
∂z

= 0.

Thus, with
J̃z = I δ(x)δ(y) rect(

z

∆z
)

and
∂J̃z
∂z

= I δ(x)δ(y)[δ(z +
∆z

2
)− δ(z − ∆z

2
)],

we get

ρ̃ = − 1

jω

∂J̃z
∂z

= j
I

ω
δ(x)δ(y)[δ(z +

∆z

2
)− δ(z − ∆z

2
)].
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In time-domain this corresponds to

ρ(r, t) =
I

ω
δ(x)δ(y)[δ(z − ∆z

2
)− δ(z +

∆z

2
)] sin(ωt)

C
m3

accompanying the current density variation
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Depicted charge density (red)leads
the depicted current density (blue)
profile by a quarter period because
of j term in charge density.

Positive reservoir of charge at z<0
end of the dipole discharges into
the negative reservoir at the other
end causing half a cycle of z-directed
current across the filament.

By the end of half-cycle the top end
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end negatively, so a new half-cycle
with motions in the opposite 
direction starts. 
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Charge

J(r, t) = Iδ(x)δ(y)rect(
z

∆z
) cos(ωt)ẑ

A
m2

.

• Clearly, the result above shows that the “ends” of a Hertzian dipole
element located at z = ±∆z

2 serve as point-charge reservoirs (of opposite
polarities) sustaining the current variations of the element.

– Radiated fields of the Hertzian dipole should be attributed to both
the time-varying ρ and the time-varying J even though considera-
tions of J will be sufficient to determine the radiated fields owing
to the dependence of ρ on J that is built-in within Maxwell’s equa-
tions.
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