
7 Hertzian dipole fields
• We concluded last lecture with the retarded potential solutions
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ẑ

of a ẑ directed Hertzian dipole.

• We noted that these oscillatory solutions describe spherical waves by
virtue of the e−jkr dependence of the potential phasor on r:

– the variable r measures distance in all directions away from the
origin, as opposed to, say, x measuring distance only along one
coordinate axis labelled as x.

Thus, while the phasor variation e−jkx describes a plane wave, the pha-
sor e−jkr describes a spherical wave (see margin).

We will next determine the magnetic and electric fields produced by a Hertzian
dipole.
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• To calculate the magnetic field phasor B̃ we will make use of

B̃ = ∇×Ã and ∇×Ã =
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in spherical coordinates.

• Given that

Ã(r) =
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4π
I∆z
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ẑ

Ãz(r)

and
ẑ · r̂ = cos θ, ẑ · θ̂ = − sin θ, ẑ · φ̂ = 0,

it follows that

Ãr = Ã(r) · r̂ = Ãz(r) cos θ,

Ãθ = Ã(r) · θ̂ = −Ãz(r) sin θ,

Ãφ = Ã(r) · φ̂ = 0.

Substituting Ãr, Ãθ, Ãφ into the curl formula, we proceed as
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Expanding the determinant, we obtain

B̃ = ∇× Ã =
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Consequently, Notice, the wave field

H̃(r) = φ̂H̃φ(r)

of the Hertzian dipole is

purely “azimuthal” — this is

the direction the right-hand-

rule would give if the right-

hand-thumb were directed in

the direction of dipole cur-

rent.
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• To obtain the accompanying electric field phasor we will next employ
Ampere’s law

∇× H̃ = J̃ + jωεoẼ,

with J̃ = 0, which is true at all locations outside the Hertzian dipole.
In that case
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=
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Substituting
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ηo ≡

√
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• This is a very complicated looking result. x
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– Fortunately, many of the terms above are important only at very
small values of r!
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• If were to drop all of the terms in Ẽ and H̃ above except for those
varying as 1

r , we would be left with
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which are the only terms of the fields of the Hertzian dipole that matter
at large distances (of interest for communication and remote sensing
purposes).

– They are called the radiation fields of the Hertzian dipole, and
the remainder (the terms which have been dropped) are called the
storage fields. Radiation fields:

Ẽ = jηoIk∆z sin θ
e−jkr
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and

H̃ = jIk∆z sin θ
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φ̂.

– The reasoning behind this terminology is as follows:
The average Poynting vector

〈E× H〉 =
1

2
Re{Ẽ × H̃∗}

computed with the full expressions for Ẽ and H̃ gives the same
result as that computed with only the simplified radiation fields.

– What that means is the remaining parts of Ẽ and H̃ (storage
fields) do not contribute to the transport of energy away from the
dipole.

– They only represent a local energy exchange (and storage) between
inductive and capacitive attributes of the dipole — recall that the
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dipole is both a filament having some inductance and a capacitor
with two reservoirs for charge storage.

In many applications of radiation theory we only need to focus on the radi-
ation fields.

Fortunately, the expressions for radiation fields are simple and have fea-
tures resembling the plane TEM waves that we are already familiar with.
Let’s see what these features are: x
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1. The phasors are orthogonal and

Ẽ × H̃∗ ∝ θ̂ × φ̂ = r̂

points in the radial direction r̂ of the spherical wave propagation just
as in plane TEM waves.

2. The magnitude of H̃ can be obtained by dividing the magnitude of Ẽ
by the intrinsic impedance ηo just as for plane TEM waves.

3. Conversely, the magnitude of Ẽ can be obtained by multiplying the
magnitude of H̃ by the intrinsic impedance ηo just as for plane TEM
waves.

4. The direction of H̃ can be deduced from the direction of Ẽ (and vice
versa) by a 90◦ rotation and enforcing the right-hand-rule of having
Ẽ × H̃∗ point in r̂ direction.
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On the other hand, these spherical TEM waves radiated by the Hertzian
dipole differ from uniform plane TEM waves by the facts that:

1. Field amplitude is not constant in the propagation direction because of
1
r dependence.

2. Field amplitude is not constant in the direction orthogonal to the prop-
agation direction because of sin θ dependence. x
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As such, a Hertzian dipole radiates TEM waves which are non-uniform
as well as spherical (non-planar).

As such, Hertzian dipole radiation is said to be anisotropic!

• Radiation is strong — forms a “beam”, so to speak — in the broadside
direction of θ = 90◦ (with respect to the dipole axis),

• Radiation vanishes for θ = 0◦, 180◦ along the dipole axis.

– In short, radiation strength scales with ∆z sin θ, a foreshortened
version of length ∆z of the dipole “seen” from an angle θ with
respect to the dipole axis. More on this later on...
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