8 Radiation fields of dipole antennas

e Radiation fields of a z-directed Hertzian dipole are repeated in the

margin.

e In this lecture we will first obtain the radiation fields of short dipole

antennas by superposing the Hertzian dipole fields.

e A “short dipole” is a practical antenna — as opposed to a hypothetical

Hertzian dipole — consisting of a pair of thin straight conducting wires
of equal lengths % placed along a common axis leaving a short gap

between them (see margin).

— A short dipole is typically used by connecting a “source” across

the gap that constitutes the “input port” of the dipole antenna.

— Let’s assume that the source is an independent current source

I(t)=I,coswtA < I=1,/0=1IA

and that the gap is an infinitesimal Az so that the dipole and its

input port occupy the region —% <z < % in total.

— We can then envision the entire dipole, including its input port, to
be a stack of Hertzian dipoles of lengths Az, with each Hertzian

L

dipole centered about position z (in the interval —5 < z <

carrying a current I(z), subject to boundary conditions
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Radiation fields:

E = jn,lkAzsin6

and

H=jlkAzsin6
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In conformity with these boundary conditions we will assume that
I(2) is a triangular current distribution

~

I(z) = IOA(%) A.

e What are the radiation fields of the short dipole antenna described
above?

We can answer this question in several different ways:

1. We could turn the specified (z) into a corresponding J(z), and
then, in succession, calculate the retarded potential A, the mag-
netic field B = V x A, and then obtain E from B using Ampere’s
law as we did for the Hertzian dipole. Finally, the storage fields
decaying faster with distance than % would be dropped from E
and B to obtain the radiation fields exclusively.

2. A variant of (1), but with the radiation field H immediately de-
duced from B, and then E is obtained by multiplying H by 7, and
rotating it by 90° so that E x H* points in 7 direction.

3. Superpose shifted and scaled versions of the radiation fields of the
Hertzian dipole (as we will do shortly).

All these options enumerated above will work because Maxwell’s equa-
tions and radiation process have linearity properties.

Triangular current
distribution



e The radiation electric field
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E = jn, kAzsinf
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of a z-directed Hertzian dipole

J=2IAz0(x)d(y)0(2)

implies the following linear relationships for a z-polarized radiation pro-

cess, where the input function shown on the left represents the current

distribution of the radiator:
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e The final result, the expression
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for the radiation electric field phasor is in fact very general, and ap-

plicable to dipole antennas of all lengths provided that the current
distribution I(z) on the dipole is known.

e In practice, the triangular current distribution

j(Z) = ]OA(%> A Triangular current

distribution

we have described earlier turns out to be applicable only when the
dipole length
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where the condition L < X is used to justify the replacement of |r—2z'Z|
by |r| =1
e Notice that the result
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is identical with the radiation field of the Hertzian dipole except that Radiation fields

of the short dipole:

— infinitesimal length Az has been replaced by a finite length % Lk

corresponding to the dipole half-length. E - i [0k£ sin @ 0
2 Amr
e The corresponding radiation magnetic field of the short dipole is and
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— Dipole half-length % is also known as effective length of the short
dipole antenna.

e The term effective length is used more broadly to denote

I ‘
) = /%eykzcosedz

defined for any length dipole antenna having a phasor current distribu-
tion I(z) and a phasor current [, at the input port (or input terminals).



For a short dipole with
- z

I(Z) - IOA(Z)a

where L < ), this definition yields £(f) = £.

For a half-wave dipole with
I(z) = IOrect(%) cos(kz),

where L = %, this definition yields

(6) = écos(g cos 0)

T sin?0

as will be shown in ECE 454.

Radiation fields of all linearly polarized antennas can be obtained
from those of the Hertzian dipole by replacing “Az” with an ap-
propriate effective length “/(0)” as illustrated above.

e The justification of this general rule is as follows:

Replacing A( ) with an arbitrary %ZO/) in the second line of the above ex-
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pression for E(r), we have
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where in the second line we have replaced all occurrences of |r — 2'Z| by
Ir| = r, except for in the complex exponential which is highly sensitive to 2.

e Replacements outside the exponential are easily justified for any finite
L (large or small) so long as r > L.

e The same replacement cannot be justified in the exponential, even in
r — oo limit, because even a

tiny difference between |r — 2'2| and |r| = r
would produce a
large difference between the "angles" of e IkIr=2"2] [ e Ikr
27

that would matter if k were sufficiently large (or A = =F small, say

compared to ~ L).

e In » — oo limit, the vectors r — 2’2 and r become parallel to one
another, in which case it can be easily seen that (see margin)

lim |r — 2'2| = r — 2’ cos 0.
r—00

This exact result in r — oo limit furnishes us, for finite r, with the
so-called paraxial approximation
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leading, in turn, to ]
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a general radiation field expression formulated in terms of effective 1o paraxial approximation the dashed

lines are treated as having equal

lengths (which is only accurate for
1ength €(9> r going to infinity), leading to
a phase error of
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— This result is certainly valid for all » > L where it makes sense =7 md
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to consider r — 2’z and r to be parallel vectors.

The phase error is less than

— The validity limit of paraxial approximation can be investigated 7 .. tolerable if r > 22
more carefully by expanding k|r — z'Z| to a higher order, and find- ) '
ing under what condition high-order correction factors are really
unnecessary — that exercise (see ECE 454) shows that paraxial
approximation is well justified for
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where the “threshold distance” 2L?/\ is known as Rayleigh dis-
tance.

e Even though we have developed a general representation for the ra-
diation fields of arbitrary dipoles in this lecture, our discussions over
the next few lectures will focus mainly on short dipoles as our basic
radiation elements.



