
8 Radiation fields of dipole antennas

• Radiation fields of a ẑ-directed Hertzian dipole are repeated in the
margin.
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• In this lecture we will first obtain the radiation fields of short dipole

antennas by superposing the Hertzian dipole fields.
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• A “short dipole” is a practical antenna — as opposed to a hypothetical
Hertzian dipole — consisting of a pair of thin straight conducting wires
of equal lengths L

2 placed along a common axis leaving a short gap
between them (see margin).

– A short dipole is typically used by connecting a “source” across
the gap that constitutes the “input port” of the dipole antenna.

– Let’s assume that the source is an independent current source

I(t) = Io cosωtA ⇔ Ĩ = Io∠0 = Io A

and that the gap is an infinitesimal ∆z so that the dipole and its
input port occupy the region −L

2 < z < L
2 in total.

– We can then envision the entire dipole, including its input port, to
be a stack of Hertzian dipoles of lengths ∆z, with each Hertzian
dipole centered about position z (in the interval −L

2 < z < L
2 )

carrying a current Ĩ(z), subject to boundary conditions

Ĩ(0) = Io∠0A and Ĩ(±
L

2
) = 0.
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In conformity with these boundary conditions we will assume that
Ĩ(z) is a triangular current distribution
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• What are the radiation fields of the short dipole antenna described
above?

We can answer this question in several different ways:

1. We could turn the specified Ĩ(z) into a corresponding J̃(z), and
then, in succession, calculate the retarded potential Ã, the mag-
netic field B̃ = ∇× Ã, and then obtain Ẽ from B̃ using Ampere’s
law as we did for the Hertzian dipole. Finally, the storage fields
decaying faster with distance than 1

r would be dropped from Ẽ

and B̃ to obtain the radiation fields exclusively.

2. A variant of (1), but with the radiation field H̃ immediately de-
duced from B̃, and then Ẽ is obtained by multiplying H̃ by ηo and
rotating it by 90◦ so that Ẽ× H̃∗ points in r̂ direction.

3. Superpose shifted and scaled versions of the radiation fields of the
Hertzian dipole (as we will do shortly).

All these options enumerated above will work because Maxwell’s equa-
tions and radiation process have linearity properties.
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• The radiation electric field

Ẽ = jηoIk∆z sin θ
e−jkr

4πr
θ̂

of a ẑ-directed Hertzian dipole

J̃ = ẑI∆zδ(x)δ(y)δ(z)

implies the following linear relationships for a ẑ-polarized radiation pro-
cess, where the input function shown on the left represents the current
distribution of the radiator:
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Field due to displaced dipole

Ẽ = jηoĨ(z
′)k∆z sin θ′

e−jk|r−z′ẑ|

4π|r− z′ẑ|
θ̂′

δ(z) → ẑ-pol radiator → jηok sin θ
e−jk|r|

4π|r|
θ̂

and

δ(z − z′) → ẑ-pol radiator → jηok sin θ
′ e

−jk|r−z′ẑ|

4π|r− z′ẑ|
θ̂′,

where (see margin)

cos θ′ = ẑ ·
r− z′ẑ

|r− z′ẑ|
;

the implication is then

∫

Ĩ(z′)δ(z−z′)dz′ = Ĩ(z) → ẑ-pol radiator →

∫

jηoĨ(z
′)k sin θ′

e−jk|r−z′ẑ|

4π|r− z′ẑ|
θ̂′dz′ = Ẽ(r)
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• The final result, the expression

Ẽ(r) =

∫

jηoĨ(z
′)k sin θ′

e−jk|r−z′ẑ|

4π|r− z′ẑ|
θ̂′dz′

for the radiation electric field phasor is in fact very general, and ap-
plicable to dipole antennas of all lengths provided that the current
distribution Ĩ(z) on the dipole is known.

• In practice, the triangular current distribution
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Ĩ(z) = Io$(
z

L
)
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we have described earlier turns out to be applicable only when the
dipole length

L * λ =
c

f

at the operation frequency f = ω
2π . For such dipoles

Ẽ(r) =

∫

jηoIo#(
z′

L
)k sin θ′

e−jk|r−z′ẑ|

4π|r− z′ẑ|
θ̂′dz′

= jηoIok

∫

#(
z′

L
) sin θ′

e−jk|r−z′ẑ|

4π|r− z′ẑ|
θ̂′dz′

≈ jηoIok {

∫

#(
z′

L
)dz′}

︸ ︷︷ ︸

sin θ
e−jk|r|

4π|r|
θ̂ = jηoIok

L

2
sin θ

e−jkr

4πr
θ̂,

L/2, area of a triangle with height 1 and base L
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where the condition L * λ is used to justify the replacement of |r−z′ẑ|
by |r| = r.

• Notice that the result

Ẽ(r) = jηoIok
L

2
sin θ

e−jkr

4πr
θ̂

is identical with the radiation field of the Hertzian dipole except that Radiation fields

of the short dipole:

Ẽ = jηoIok
L

2
sin θ

e−jkr

4πr
θ̂

and

H̃ = jIok
L

2
sin θ

e−jkr

4πr
φ̂.

– infinitesimal length ∆z has been replaced by a finite length L
2

corresponding to the dipole half-length.

• The corresponding radiation magnetic field of the short dipole is

H̃(r) = jIok
L

2
sin θ

e−jkr

4πr
φ̂.

– Dipole half-length L
2 is also known as effective length of the short

dipole antenna.

• The term effective length is used more broadly to denote

((θ) ≡

∫
Ĩ(z)

Io
ejkz cos θdz

defined for any length dipole antenna having a phasor current distribu-
tion Ĩ(z) and a phasor current Io at the input port (or input terminals).
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For a short dipole with

Ĩ(z) = Io#(
z

L
),

where L * λ, this definition yields ((θ) = L
2 . Effective length

((θ) ≡

∫
Ĩ(z)

Io
ejkz cos θdz.

For a half-wave dipole with

Ĩ(z) = Iorect(
z

L
) cos(kz),

where L = λ
2 , this definition yields

((θ) =
λ

π

cos(π2 cos θ)

sin2 θ
,

as will be shown in ECE 454.

Radiation fields of all linearly polarized antennas can be obtained

from those of the Hertzian dipole by replacing “∆z” with an ap-

propriate effective length “((θ)” as illustrated above.

• The justification of this general rule is as follows:

Replacing #(z
′

L) with an arbitrary Ĩ(z′)
Io

in the second line of the above ex-

pression for Ẽ(r), we have
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Ẽ = θ̂Ẽθ
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where in the second line we have replaced all occurrences of |r − z′ẑ| by
|r| = r, except for in the complex exponential which is highly sensitive to z′.

• Replacements outside the exponential are easily justified for any finite
L (large or small) so long as r - L.

• The same replacement cannot be justified in the exponential, even in
r → ∞ limit, because even a

tiny difference between |r− z′ẑ| and |r| = r

would produce a

large difference between the "angles" of e−jk|r−z′ẑ| and e−jkr

that would matter if k were sufficiently large (or λ = 2π
k small, say

compared to ∼ L).
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• In r → ∞ limit, the vectors r − z′ẑ and r become parallel to one
another, in which case it can be easily seen that (see margin)

lim
r→∞

|r− z′ẑ| = r − z′ cos θ.

This exact result in r → ∞ limit furnishes us, for finite r, with the
so-called paraxial approximation

e−jk|r−z′ẑ| ≈ e−jk(r−z′ cos θ) = e−jkrejkz
′ cos θ,

7



leading, in turn, to

Ẽ(r) ≈ jηoIok

∫
Ĩ(z′)

Io
ejkz

′ cos θdz′

︸ ︷︷ ︸

sin θ
e−jkr

4πr
θ̂,

≡ ((θ)

a general radiation field expression formulated in terms of effective
length ((θ).

– This result is certainly valid for all r - L where it makes sense
to consider r− z′ẑ and r to be parallel vectors.

– The validity limit of paraxial approximation can be investigated
more carefully by expanding k|r−z′ẑ| to a higher order, and find-
ing under what condition high-order correction factors are really
unnecessary — that exercise (see ECE 454) shows that paraxial
approximation is well justified for

r "
2L2

λ
,

where the “threshold distance” 2L2/λ is known as Rayleigh dis-

tance.

• Even though we have developed a general representation for the ra-
diation fields of arbitrary dipoles in this lecture, our discussions over
the next few lectures will focus mainly on short dipoles as our basic
radiation elements.
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