
9 Poynting vector, radiated power, radiation re-
sistance
Consider the radiation fields of a ẑ-polarized short-dipole antenna shown in
the margin in a compact form.
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4πr

and $ = L/2.

• How much average power is radiated by the short-dipole antenna to
sustain these fields, and

• how can we determine this amount, Prad, by electrical measurements
which can be performed at the antenna input port — the small gap
at the dipole center where the dipole is connected to the source circuit
(typically via some transmission line network)?

To answer these questions we will calculate in this lecture the average
Poynting vector of radiation fields of the dipole antenna and the “flux”
of the same vector computed over a sphere imagined to surround the dipole.

• Recall once again that Poynting vector

S ≡ E ×H

denotes the energy transported by electromagnetic fields per unit time
and per unit area normal to the vector itself. With time-harmonic fields
the average value of Poynting vector can be denoted and computed as

〈E×H〉 = 1

2
Re{Ẽ× H̃∗}

in terms of field phasors Ẽ and H̃.
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• It is this quantity
〈S〉 = 〈E ×H〉

which is independent of the storage fields of dipole antennas and only
depend on their radiation fields.

• Using (see margin once again)
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Radiation fields
of short dipole:

Ẽ = Ẽθθ̂

and

H̃ =
Ẽθ

ηo
φ̂

where

Ẽθ = jηoIok$ sin θ
e−jkr

4πr

and $ = L/2.

Ẽ = θ̂Ẽθ and H̃ = φ̂
Ẽθ

ηo
with Ẽθ = jηoIk$ sin θ

e−jkr

4πr
,

we find

Ẽ × H̃∗ = θ̂Ẽθ × (φ̂
Ẽθ

ηo
)∗ = θ̂ × φ̂

|Ẽθ|2

ηo
= r̂

|Ẽ|2

ηo

and
〈E ×H〉 = 1

2
Re{Ẽ× H̃∗} = r̂

|Ẽ|2

2ηo
.

• Since

|Ẽ|2 = |Ẽθ|2 =
η2o|Io|2k2|$|2 sin2 θ

(4πr)2
=

η2o|Io|2|$|2 sin2 θ
4(λr)2

,

we have
〈E ×H〉 = r̂

|Ẽ|2

2ηo
=

ηo
8
|Io|2

|$|2

(λr)2
sin2 θr̂.

• The expression above is the energy flux density or transmitted
power density of the dipole antenna as a function of distance r from
the dipole and angle θ of viewing direction off the dipole axis.
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• The average power output of the dipole — radiated power Prad — can
next be obtained by computing the flux of 〈E × H〉 over any closed
surface surrounding the dipole.
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Infinitesimal area on a con-
stant r surface is

dS = (rdθ)(r sin θdφ)

= r2dΩ

where

dΩ ≡ sin θdθdφ

is called infinitesimal solid

angle.

– This calculation is most easily carried out over a spherical surface
of radius r having infinitesimal surface elements

dS = r̂(r sin θdφ)(rdθ) = r̂r2 sin θdθdφ ≡ r̂r2dΩ,

where
dΩ ≡ sin θdθdφ

(introduced to maintain a compact notation) is called a solid an-
gle increment.

We then note that

〈E ×H〉 · dS =
ηo
8λ2

|Io|2|$|2 sin2 θdΩ

and the flux of 〈E×H〉 is
∮

〈E×H〉 · dS
︸ ︷︷ ︸

=
ηo
8λ2

|Io|2
∫

dΩ|$|2 sin2 θ

Prad

where it is implied that
∫

dΩ =

∫ 2π

φ=0
dφ

∫ π

θ=0
dθ sin θ.
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– This result can be cast as

Prad =
1

2
Rrad|Io|2 where Rrad =

ηo
4λ2

∫
dΩ|$ sin θ|2

is known as radiation resistance.

• If $ is the effective length of a dipole — distinct from its physical length
L because of current weighting — then $ sin θ is “how long the effective
length looks” when one sees it (the dipole) at an angle (see margin).
Solid angle integral of the square of this “foreshortened” effective
length, namely
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Note: recall that $ may be a

function of θ itself!

∫
dΩ|$ sin θ|2,

determines the radiation resistance of the dipole antenna.
Since for a short dipole $ = L

2 is independent of angle θ (unlike for
half-wave dipole), we have
∫

dΩ|$ sin θ|2 = (
L

2
)2
∫

dΩ| sin θ|2 = (
L

2
)2
∫ 2π

0
dφ

∫ π

0
dθ sin θ| sin θ|2

= (
L

2
)22π

∫ π

0
dθ sin θ| sin θ|2

︸ ︷︷ ︸
=

2πL2

3
.

4/3

Hence the radiation resistance of the short dipole is

Rrad =
ηo
4λ2

∫
dΩ|$ sin θ|2 = ηo

4λ2

2πL2

3
= 20π2(

L

λ
)2Ω.
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• Since a short dipole is constrained to have L
λ ( 1, say 1

10 or smaller,
Rrad will be equal to or less than about 2Ω.

• Thus, a short dipole with an input current of Ĩ(0) = Io = 1 A will have
at best an average power output 1

2I
2
oRrad of about 1 W.

This is not quite at the level of 100s of W’s of power that typical radio
stations transmit!
Using antennas with higher Rrad than a short dipole1 — e.g., a half-
wave dipole for which Rrad ≈ 73Ω — is the best way of addressing this
difficulty since the alternate solution of increasing Io (as needed) is not
recommended because of antenna losses :

– In practice, antennas appear as a circuit element with input resis-
tance

Ro = Rrad +Rloss

where Rloss represents ohmic losses (heating of antenna wires) —
an antenna consumes an average power of

1

2
I2o (Rrad +Rloss)

out of which only
1

2
I2oRrad

1Short dipoles are typically employed as receiving antennas rather than transmitting antennas because
of this. Receiving properties of antennas are closely related to their transmission properties, but figures
of merit of antennas pertinent in transmission and reception are somewhat different as we will learn later
on in the course.
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is the useful radiated power.

Typically Rloss ∝ L, whereas Rrad ∝ L2 for small L, so going to longer
dipoles (and learning more about them in ECE 454) really helps.

• A source circuit connected to the antenna terminals “sees” the antenna
(and the radiation volume with which the antenna interacts) as a two-
terminal element having some impedance

+-

Source
Circuit

Antenna

ZT Ĩ(0) = Io

ṼT Zo = Ro + jXoṼo

+

-

Zo ≡
Ṽo

Ĩ(0)
= Ro + jXo

known as antenna impedance. Antenna reactance:

Short dipoles have capacitive
reactances, just like the line-
impedance at a small dis-
tance away from an open ter-
mination on a transmission
line.

Capacitive reactance
switches to an inductive
one when the dipole length
is about λ/2, just like the
line-impedance at a distance
λ/4 away from an open
termination.

Thus the half-wave dipole is
resonant , having a zero input
reactance — Zo = Rrad+j0 for
an ideal half-wave dipole.

In practice, resonant half-
wave dipole with a length L
and wire radius a has L+2a =
λ/2 to a good approximation.

– We have already discussed the resistive component Ro above.
– Modeling the reactive component Xo requires working with

storage fields of the antenna as well, matching components of total
fields to proper boundary conditions imposed by the actual sur-
faces of antenna wires (i.e., antenna geometry needs to be specified
in detail before Xo can be determined).
Antenna reactance will be examined in some detail in ECE 454
(along with methods of calculating Ĩ(z)).

– We will not need to calculate antenna reactances in this course.
However, it is worth mentioning that
1. antennas with Xo = 0 are known as resonant antennas, and
2. half-wave dipole is a resonant antenna (see margin note).
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