
10 Antenna gain, beam pattern, directivity
Beam pattern plot of low di-
rectivity dipole antenna:

A higher directivity beam

pattern of an array antenna

• A dipole antenna (or a closely related monopole to be studied in Lecture
18) is a “near perfect” radiator for purposes of “broadcasting” — that is,
sending waves of equal amplitudes in all directions to reach out multiple
targets or receivers.

• However dipole is a poor choice when the objective is to radiate the
power Prad in a specific direction (i.e., towards a specific receiver), as
in

– communication with deep space probes or orbiting satellites, or
with

– radar beacons where the objective is to determine the direction
of a moving target.

In such applications we need high-gain and directive antennas, as
opposed to low-gain and non-directive antennas such as a single dipole.

• Qualitatively speaking, gain and directivity of an antenna measures its
ability to confine its radiated wave fields within a narrow field of view
called the antenna beam or beam pattern.

– when a narrow antenna beam is achieved, and all the radiated
power Prad of the antenna is conveyed through this beam, the
power density of the waves is naturally high within the beam.
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Arrays of dipoles can serve as high-gain antennas needed in
beaming applications as we will learn in the next lecture.

In this lecture we will focus on the definition of antenna gain
and directivity as well as the related concept of beam solid
angle.

• Consider an antenna located at the origin with an input current of Io,
radiation resistance Rrad, and a radiated power

Prad =
1

2
|Io|2Rrad Watts.

What would be the time-average Poynting magnitude |〈E(r, t)×H(r, t)〉|,
i.e., the power density in Watts/m2 of the radiation fields at a location
r = (r, θ,φ) a distance r away from the antenna?

Answer:
Power density of a radiating
antenna in the far field– If the antenna were an isotropic radiator then we would have a

power density of

|〈E(r, t)×H(r, t)〉| = Prad

4πr2
;

however, no real antenna is an isotropic radiator, and thus the
correct answer can be formally cast as

|〈E(r, t)×H(r, t)〉| = Prad

4πr2
G(θ,φ)

2



in terms of an antenna gain (over isotropic radiator)

G(θ,φ) ≡ |〈E(r, t)×H(r, t)〉|
Prad
4πr2

,

to be determined.

Clearly, gain G(θ,φ) is the ratio of the radiated average power density
of an antenna to that of an isotropic radiator (hypothetical perfect
broadcasting antenna) radiating the same average power Prad.

– According to this definition, the solid angle integral of gain G(θ,φ)
is
∫

dΩG(θ,φ) ≡
4π

∫
dΩr2|〈E(r, t)×H(r, t)〉|

Prad

=
4π

∮
〈E(r, t)×H(r, t)〉 · dS

Prad
= 4π, a fixed value.

Since
G(θ,φ) ∝ |〈E×H〉| ∝ |$ sin θ|2,

we can write
G(θ,φ) = K|$ sin θ|2

in terms of a proportionality constant K, which is subsequently iden-
tified as

K =
4π∫

dΩ|$ sin θ|2
after applying the constraint

∫
dΩG(θ,φ) = 4π.
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Thus we obtain a general gain formula

G(θ,φ) =
4π|$ sin θ|2∫
dΩ|$ sin θ|2

applicable to all antennas for which the foreshortened effective length
$ sin θ is known.

• For an arbitrary antenna, gain calculation can be complicated because
of the solid angle integral in the denominator in G(θ,φ) formula.
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Gain functions G(θ,φ) de-
picted on a constant φ plane
for
(a) short-dipole (red curve),
and

(b) half-wave dipole (blue

curve).

However, for a short dipole with $ = L/2 the calculation is simple and
leads to (in case of ẑ-polarization)

G(θ,φ) =
4π| sin θ|2∫
dΩ| sin θ|2

=
4π| sin θ|2

2π 4
3

=
3

2
sin2 θ.

For a half-wave dipole it works out that

G(θ,φ) ≈ 1.64
cos2(π2 cos θ)

sin2 θ

with a maximum value of 1.64 at θ = 90◦.

– Having maximum gains of 1.5 and 1.64, respectively, short- and
half-wave-dipoles are considered to be low-directivity antennas.
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Directivity D of any antenna is defined to be the maximum value of its
gain G(θ,φ), i.e.,

D = G(θ,φ)max.

While the solid angle integral of G(θ,φ) is constrained to have a fixed value
of 4π, there is no constraint on the maximum value of G(θ,φ); therefore, it is
possible to design antennas with arbitrarily large directivities D by making
the antenna beam shape arbitrarily narrow.

Gain function

G(θ,φ) =
3

2
sin2 θ

of short-dipole depicted as
a 3D polar plot — gain in
any direction (θ,φ) is propor-
tional to the radius vector
from the origin to the de-
picted surface.

A short-dipole has a low di-
rectivity of

D = 1.5

because it radiates with a
broad beam that is isotropic
in azimuth.

Antennas with high-

directivity have narrow and

pointy beam shapes.

• Note that the constraint
∫

dΩG(θ,φ) = 4π

implies

D

∫
dΩ

G(θ,φ)

G(θ,φ)max
= 4π,

which can also be written as

DΩo = 4π.

in terms of beam solid angle

Ωo ≡
∫

dΩ
G(θ,φ)

G(θ,φ)max

to be discussed further in this lecture.
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• Important result: the product of antenna directivity D and the beam
solid angle Ωo is fixed, specifically

DΩo = 4π,

which implies that if D is large then Ωo is small and vice versa. Antennas with high-

directivity have narrow and

pointy beam shapes.
• A useful method to determine the antenna directivity is to use

D =
4π

Ωo
,

where the solid angle

Ωo =

∫
dΩ

G(θ,φ)

G(θ,φ)max
=

∫
dΩ

|$ sin θ|2

|$ sin θ|2max

can be calculated once the antenna effective length is known.
Example 1: For a short dipole with $ = L/2, we have

Ωo =

∫
dΩ

| sin θ|2

| sin θ|2max

=

∫
dΩ| sin θ|2 = 2π

4

3
=

8π

3
.

Consequently,
D =

4π

Ωo
=

4π

8π/3
= 1.5

consistent with what we learned above.

– This method of finding D from Ωo is very useful because there are
geometrical methods for estimating Ωo in terms of the physical
antenna size (as we will learn later on).
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Once D is determined, the gain of the antenna can be written as

G(θ,φ) = D
|$ sin θ|2

|$ sin θ|2max

without the need to perform a solid angle integral in practice. Antennas with high-

directivity have narrow and

pointy beam shapes.
• The beam solid angle

Ωo =

∫
dΩ

G(θ,φ)

G(θ,φ)max
=

∫
dΩ

|$ sin θ|2

|$ sin θ|2max

extends the concept of “angle” from 2D to 3D to describe the angular
width of the antenna beam pattern. Let us examine this parameter
more closely.

• Ordinary angles ranging from 0 to 2π radians (with degree equivalents
ranging from 0 to 360) correspond to arc lengths measured on unit-
radius circles drawn on 2D planar surfaces.

• Solid angles ranging from 0 to 4π steradians correspond to areas of
patches or spots specified on unit-radius spheres defined in 3D space.

– An antenna-beam solid angle

Ωo =

∫
dΩ

G(θ,φ)

G(θ,φ)max
=

∫
dΩ

|〈E×H〉|
|〈E×H〉|max

is an equivalent area of a spot or a patch (centered about the
direction of |〈E×H〉|max) specified on a unit sphere surrounding
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the antenna, having the property that the entire power output Prad

of the antenna would flood this area with an equal flux density of
|〈E×H〉|max if the beam were reformed into a conical shape. Antennas with high-

directivity have narrow and

pointy beam shapes.
– Beam shapes of high-directivity antennas with small Ωo can be well

represented by equivalent conical beams, but such a representation
is not appropriate to dipole-like broadcast antennas (see margin).

Example 2: For a short dipole with

G(θ,φ) =
3

2
sin2 θ

we have
D =

3

2
and Ωo =

∫
dΩ

| sin θ|2

| sin θ|2max

= 2π
4

3
=

8π

3

as we already established in Example 1.

Consequently,
D =

4π

Ωo
=

4π

8π/3
= 1.5

consistent with what we learned above.
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Example 3: An antenna designer comes up with a model that has a gain function specified
as

G(θ,φ) =

{
D sin2 θ, 0 < θ < π

2

0, othewise,

where D is the antenna directivity. Determine both D and the beam solid angle Ωo.

Solution: Since the solid angle integral of G(θ,φ) has to equal 4π, it must be true that
∫

dΩG(θ,φ) =

∫ 2π

φ=0
dφ

∫ π/2

θ=0
dθ sin θD sin2 θ = 4π.

It follows that

2πD

∫ π/2

θ=0
dθ sin θ sin2 θ = 4π ⇒ −D

∫ π/2

θ=0
(d cos θ)(1− cos2 θ) = 2

from which we get

D =
2

∫ 0
θ=π/2 d cos θ(1− cos2 θ)

=
2

(cos θ − cos3 θ
3 |0π/2

=
2

1− 1
3

= 3.

This is twice the directivity of the short-dipole (which makes sense because half the
gain function of the short dipole is missing from the gain of this antenna).

As for the beam solid angle, it is
Ωo =

4π

D
=

4π

3
,

which is half the solid angle of a short dipole (again for the same reason).
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