
11 Beam pattern, wave interference
In this lecture we will see how antenna beams can be “patterned” by us-
ing interference effects of fields radiated by multiple dipoles or dipole-like
elements.

• Let’s recall that the antenna beam is the shape of the antenna gain
function G(θ,φ) that can be depicted as a surface plot in 3D.

Also

D = G(θ,φ)max =
4π

Ωo
and Ωo =

∫
dΩ

G(θ,φ)

G(θ,φ)max
=

∫
dΩ

|〈E×H〉|
|〈E×H〉|max

as well as

|〈E×H〉| = |Ẽθ|2

2ηo
with Ẽθ = jηoIok% sin θ

e−jkr

4πr

for ẑ-polarized antennas and elements.

– With % = L/2 the above equations would represent a short dipole.
– An antenna system constructed by an array of such dipoles would

also be represented by the same equations, but with a different
% = %(θ,φ) (to be determined).
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• The design and analysis of multi-element or multi-dipole arrays are
facilitated by the linearity of wave solutions of Maxwell’s equations: If

J̃1 → ME → Ẽ1

and

J̃2 → ME → Ẽ2

then

αJ̃1+βJ̃2 → ME → αẼ1+βẼ2

– If radiators J̃1 and J̃2 produce radiated wave solutions Ẽ1 and
Ẽ2, respectively, then a radiator αJ̃1+ βJ̃2 would produce a wave
solution αẼ1 + βẼ2 with arbitrary (complex) weights α and β.

– By induction, the above principle of superposition can be extended
to n elements.

Note that this superposition principle applies at the level of fields rather
than power. This is similar to superposition principle applying at the
level of voltage and currents in circuit analysis.

Superposition of wave fields can produce resultant wave fields with
enhanced or reduced wave amplitudes as a consequence of interference
effects.

– A constructive interference occurs at locations where the waves
being superposed are “in phase”, meaning that the phasors repre-
senting the wave fields are complex numbers having the same angle
— i.e., ∠Ẽ2 = ∠Ẽ1.

– A destructive interference occurs where the waves being super-
posed are “out of phase”, meaning that the phasors representing
the wave fields are complex numbers having an angle difference of
±180◦ — i.e., ∠Ẽ2 = ∠Ẽ1 ± 180◦.

Constructive
interference

E1 + E2

E1

E2

Destructive
interference

E1 + E2

E1

E2
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With a judicious choice of the locations and relative amplitudes of the
radiators J̃1 and J̃2, it is possible to arrange for αẼ1 + βẼ2 to ex-
hibit constructive interference in desired beam directions — that is the
essence of antenna beam design and designing high directivity antenna
systems.

– One final detail before showing some examples: the calculation of
the superposed wave fields is considerably simplified at distances
r to the source elements that far exceed the largest distance sep-
arating the source elements. x

y

z

θ
φ

r

Ẽ = θ̂Ẽθ

H̃ = φ̂H̃φ

Ẽ × H̃∗

θ′

d

r−
ẑd

d cos θ

Example 1: Two ẑ polarized dipole antennas with equal input currents Io are located
at (0, 0, 0) and (0, 0, d). Find the phasor expression Ẽ(r) representing the super-
position of the fields radiated by each dipole individually. What are the maximum
and minimum values of the field intensity |Ẽ(r)| as compared to intensity |Ẽ1(r)|
of the field due to the dipole at the origin?

Solution: First, the dipole at (x, y, z) = (0, 0, 0) has a wave field phasor

Ẽ1(r) = jηoIok% sin θ
e−jkr

4πr
θ̂ = jηoIok% sin θ

e−jk|r|

4π|r| θ̂.

The field phasor of the second dipole at (x, y, z) = (0, 0, d) is a shifted counterpart
of Ẽ1, namely

Ẽ2(r) = Ẽ1(r− ẑd) = jηoIok% sin θ
′ e

−jk|r−ẑd|

4π|r− ẑd| θ̂
′,
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where the angle θ′ is the angle between vectors ẑ and r − ẑd (see margin) such
that

ẑ.
(r− ẑd)

|r− ẑd| = cos θ′.

When both dipoles are “on”, the total electric field phasor is

Ẽ(r) = Ẽ1(r) + Ẽ2(r) = jηoIok%[sin θ
e−jk|r|

4π|r| θ̂ + sin θ′
e−jk|r−ẑd|

4π|r− ẑd| θ̂
′].

This superposition field phasor can also be expressed more compactly as

Ẽ(r) = jηoIok% sin θ
e−jk|r|

4π|r| [θ̂ +
sin θ′

sin θ

|r|
|r− ẑd|

e−jk|r−ẑd|

e−jk|r| θ̂′],

from which it follows that

|Ẽ(r)| = |Ẽ1(r)||θ̂ +
sin θ′

sin θ

|r|
|r− ẑd|

e−jk|r−ẑd|

e−jk|r| θ̂′|.

From this result it is evident that |Ẽ(r)| can be at most twice |Ẽ1(r)| when
the primed term on the right approaches θ̂ (constructive interference), but it
can also vanish when the primed term on the right approaches −θ̂ (destructive
interference).

x

y

z

θ
φ

r

Ẽ = θ̂Ẽθ

H̃ = φ̂H̃φ

Ẽ × H̃∗

θ′

d

r−
ẑd

d cos θ
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x

y

z

θ
φ

r

Ẽ = θ̂Ẽθ

H̃ = φ̂H̃φ

Ẽ × H̃∗

θ′

d

r−
ẑd

d cos θ

Example 2: Simplify the superposition field

Ẽ(r) = Ẽ1(r) + Ẽ2(r) = jηoIok% sin θ
e−jk|r|

4π|r| [θ̂ +
sin θ′

sin θ

|r|
|r− ẑd|

e−jk|r−ẑd|

e−jk|r| θ̂′]

from Example 1 by making paraxial approximation in the expansion of |r−ẑd|
in relation to |r|. From the simplified expression, find the effective length %eff
of the two element antenna array of short dipoles by forcing Ẽ(r) to have the
standard form of a ẑ-polarized radiation field.

Solution: Making paraxial approximation in the expansion of |r − ẑd| in relation
to |r| amounts to having |r| = r ( d so that vectors r and r− ẑd can be regarded
as being parallel — under that condition we can use θ′ = θ, θ̂′ = θ̂, and

|r− ẑd| = |r|− d cos θ.

Then, the total field phasor simplifies as

Ẽ(r) = jηoIok% sin θ
e−jk|r|

4π|r| θ̂[1 +
|r|

|r|− d cos θ

e−jk(|r|−d cos θ)|

e−jk|r| ]

≈ Ẽ1(r)[1 + ejkd cos θ].

Alternatively,

Ẽ(r) = jηoIok %[1 + ejkd cos θ]︸ ︷︷ ︸ sin θ
e−jk|r|

4π|r| θ̂,

%eff

from which we have
%eff = %[1 + ejkd cos θ]

for the effective length of the array in terms of the effective length % = L
2 of the

short-dipole array element.
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Polar plots of G(θ,φ)/D for
two-element array (compared
to the short-dipole, shown in
black):

d = λ
2
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Question: which of the above
arrays has the largest D and
smallest Ωo?

Explain qualitatively.

Example 3: For the two-element antenna array of short dipoles examined in Examples
1 and 2 with field phasor

Ẽ(r) = jηoIok %[1 + ejkd cos θ]︸ ︷︷ ︸ sin θ
e−jk|r|

4π|r| θ̂,

%eff

and effective length
%eff = %[1 + ejkd cos θ],

determine the gain function in terms of array directivity D.

Solution: For any linear polarized antenna we can write
G(θ,φ) = Df(θ,φ)

where function f(θ,φ) has a maximum value of 1 and is proportional to
|%eff sin θ|2 where θ is the angle measured from the element axis. For our two-
element array described above we have

f(θ,φ) ∝ |%eff sin θ|2 ∝ |1 + ejkd cos θ|2 sin2 θ
= |ej 1

2kd cos θ(ej
1
2kd cos θ + e−j 1

2kd cos θ)|2 sin2 θ
= |ej 1

2kd cos θ|2|ej 1
2kd cos θ + e−j 1

2kd cos θ|2 sin2 θ

∝ cos2(
1

2
kd cos θ) sin2 θ.

The function on the right maximizes at a value of 1 when θ = 90◦ — see its polar
plot in the margin for d = λ

2 , d = 2λ, and d = 8λ. Therefore, the gain of our two
element array (for all possible d) is

G(θ,φ) = D cos2(
1

2
kd cos θ) sin2 θ.
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d = 2λ
Sidelobe

Mainlobe

BWFN=
Beam-width between first nulls
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Example 4: For the two-element antenna array examined in Examples 1-3, with the
gain function

G(θ,φ) = D cos2(
1

2
kd cos θ) sin2 θ,

determine all angles θ for which G(θ,φ) = 0 if d = 2λ.

Solution: Clearly, G(θ,φ) = 0 at θ = 0◦ and 180◦ because of sin2 θ factor. But also,
because of factor cos2(12kd cos θ), we have G(θ,φ) = 0 for all θ for which

1

2
kd cos θ =

π

2
(2n+ 1)

where n = 0,±1,±2 · · ·. This condition can be satisfied when

cos θ =
π

kd
(2n+ 1) =

π
2π
λ d

(2n+ 1) =
λ/2

d
(2n+ 1)

for all integers n such that the right hand side is bounded by -1 and +1. For
d = 2λ, this condition reduces to

cos θ =
λ/2

2λ
(2n+ 1) =

2n+ 1

4
= {−3

4
,−1

4
,
1

4
,
3

4
}.

So, we have

G(θ,φ) = 0 for θ=0◦, cos−1 3

4
= 41.41◦, cos−1 1

4
= 75.52◦,

cos−1 −1

4
= 104.78◦, cos−1 −3

4
= 138.6◦, 180◦.
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• The patterns shown for the two-element array in the margin illustrate
that larger the element separation d, narrower the angular width of the
mainlobe. d = λ

2
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– However, the number of sidelobes also increase with d, so there
is no substantial directivity increase with distance d because of
that (because of power diverted into the relatively large intensity
sidelobes).

x

y

z

θ
φ

r

Ẽ = θ̂Ẽθ

Ẽ × H̃∗

θ′

d

r−
ẑd

d cos θ

2d

3d

– The remedy is to have multiple-element arrays analyzed next.

• In the two-element array the distant field, in paraxial approximation,
was found to be

Ẽ(r) = Ẽ1(r) + Ẽ2(r) = Ẽ1(r)[1 + ejkd cos θ]

after using
Ẽ2(r) ≈ Ẽ1(r)e

jkd cos θ.

• For a 3-element array with element locations (0, 0, 0), (0, 0, d), and
(0, 0, 2d) this result can be extended as

Ẽ(r) = Ẽ1(r) + Ẽ2(r) + Ẽ3(r) = Ẽ1(r)[1 + ejkd cos θ + ej2kd cos θ],

and, for an N -element array, with elements at (0, 0, nd) for n in the
interval 0 · · ·N − 1, we can write

Ẽ(r) = Ẽ1(r)[1 + ejkd cos θ + ej2kd cos θ + · · · + ej(N−1)kd cos θ].
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– These superposed field expressions in the antenna far-field imply
an effective length of

x

y

z

θ
φ

r

Ẽ = θ̂Ẽθ

Ẽ × H̃∗

θ′

d

r−
ẑd

d cos θ

2d

3d

The same interference prin-

ciple governs N-element ar-

rays: at locations where field

phasors from individual el-

ements have the same an-

gle, constructive interference

takes place, and the radiation

field of the array is strong.

At other locations where field

phasors from individual el-

ements cancel one another,

the field of the whole array

is weak.

%eff = %
N−1∑

n=0

(ejkd cos θ)n.

• The sum on the right is called array factor (A.F.) and we see that the
effective length of the array antenna is the product of the effective
length % of an array element and A.F..

• We can write the gain of the N -element array (once again as)

G(θ,φ) = Df(θ,φ),

where

f(θ,φ) ∝ |%eff sin θ|2 = |%|2|
N−1∑

n=0

(ejkd cos θ)n|2 sin2 θ

and has a max value of 1. The A.F. maximizes at a value of N at
θ = 90◦ and thus it works out that

G(θ,φ) = D sin2 θ| 1
N

N−1∑

n=0

(ejkd cos θ)n|2.

– To simplify this gain formula we note that

s ≡ 1+w+w2+· · ·+wN−1 ⇒ sw = w+w2+· · ·+wN−1+wN,
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and, therefore, d = λ
2
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s(w − 1) = wN − 1 ⇒ s =
wN − 1

w − 1
.

• Applying this summation formula for s with w = ejkd cos θ, we obtain

A.F. =
N−1∑

n=0

(ejkd cos θ)n =
ejNkd cos θ − 1

ejkd cos θ − 1
.

Now,

|A.F.| = |
N−1∑

n=0

(ejkd cos θ)n| = |ejNkd cos θ − 1|
|ejkd cos θ − 1|

=
|ejN2 kd cos θ(ejN2 kd cos θ − e−jN2 kd cos θ)|
|ej 12kd cos θ(ej 12kd cos θ − e−j 12kd cos θ)|

=
| sin(N2 kd cos θ)|
| sin(12kd cos θ)|

.

The upshot is,

G(θ,φ) = D sin2 θ
sin2(N2 kd cos θ)

N2 sin2(12kd cos θ)

for an N -element array with a physical size Nd.

– Plots of G(θ,φ)/D for d = λ
2 and N = 2, 4, 16 are shown in

the margin. Note the reduced sidelobe levels (you can barely see
them) and the fact that larger N implies larger directivity D.
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