
12 Interference, antenna arrays — cont’d.

We continue with our study of interference effects and antenna arrays.
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3d• Beam patterns of N -element antenna arrays examined last lecture were
isotropic in φ direction — the main effect of increasing the array size Nd
appeared to be narrowing the mainlobe of the pattern in θ direction.

New vocabulary:

– Broadside arrays

– Array axis

– Broadside direction

• These so-called broadside arrays — meaning that they mainly ra-
diate in the “broadside direction” of the “array axis” — are good for
broadcasting purposes at relatively high frequencies ω

2π in the FM band
(∼100 MHz),

– where array sizes Nd, in excess of many λ’s, become practicable
(as opposed to in AM band where ω

2π ∼1 MHz and λ ∼ 300 m).

• They may also be used as “elements” of arrays built along x- or y-axis
directions which we will consider next.

– In that case it will be possible to produce antenna beam patterns
anisotropic in the azimuth plane (in φ direction).

– We will also consider phasing the element input currents so that
the mainlobe of the beam can be steered into desired directions in
the azimuth plane.
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• Consider an array of elements polarized in ẑ-direction positioned along
the x-axis as shown above. Our initial analysis of this array will assume
equal input currents Io for all the elements. Let

Ẽ0(r) ∝
e−jk|r|

|r|
denote the field at the observation point r due to the element at the origin.

– Then, using the paraxial approximation, the field phasor at a dis-
tant observation point due to the next element at (d, 0, 0) can be
expressed in terms of Ẽ0(r) as

Ẽ1(r) ≈ Ẽ0(r)e
jkd cos θx

where θx is the angle between vectors r and x̂, i.e.,

cos θx = r̂ · x̂ = (sin θ cosφx̂+sin θ sinφŷ+cos θẑ) · x̂ = sin θ cosφ,

known as a direction cosine.
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– Likewise,
Ẽ2(r) ≈ Ẽ0(r)e

j2kd cos θx, etc., so that,

– For an N -element array,

Ẽ(r) = Ẽ0(r)[1 + ejkd cos θx + ej2kd cos θx + · · · + ej(N−1)kd cos θx].

• The field expression above is identical in essence with the field expres-
sion for the N -element array examined in the last lecture except for the
replacement of cos θ by cos θx. Therefore, assuming that Ẽ0(r) is due
a short dipole (so that & = L

2 is independent of direction), we obtain
the gain function for our new array by exchanging cos θ by cos θx in the
gain expression obtained in the last lecture — by that procedure we
arrive at

G(θ,φ) = D sin2 θ
sin2(N2 kd cos θx)

N2 sin2(12kd cos θx)

= D sin2 θ
sin2(N2 kd sin θ cosφ)

N2 sin2(12kd sin θ cosφ)
.

We have at last obtained a gain function that does actually depend on
both θ and φ.

– Even more complicated gain expressions would be obtained if the
array elements were themselves arrays (like those examined last
lecture) having angle dependent &’s! (see HW problems).
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Phased array:
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• Next let’s examine what happens when the element input currents are
not identical, but follow a progressive phase pattern with

In = Ioe
−jnα for n-th element located at (nd, 0, 0)

where α is a phasing increment specified in radians.

In that case — since Ẽn(r) ∝ In — we would have a phased array

with element field phasors

Ẽ1(r) ≈ Ẽ0(r)e
j(kd cos θx−α), Ẽ2(r) ≈ Ẽ0(r)e

j2(kd cos θx−α), etc.,

and an array gain function (again, assuming short-dipole elements)

G(θ,φ) = K sin2 θ
sin2(N2 (kd sin θ cosφ− α))

N2 sin2(12(kd sin θ cosφ− α))

where constant K is to be determined by requiring
∫
GdΩ = 4π.
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• On θ = 90◦ plane we have

G(90◦,φ) = K
sin2(N2 (kd cosφ− α))

N2 sin2(12(kd cosφ− α))

which leads to azimuth plane patterns (G/K) shown in the margin
shown for d = λ

4 , N = 16, and α = 0, π
4 , and π

2 radians.

• Also, 3D plots of G(θ,φ)/K for d = λ
4 , N = 16, and α = 0 and π

2

radians are shown below:

Question: The broadside pattern shown on the left is clearly a “fan beam” — how
would you make the “fans” narrower (in order to increase D) in θ direction?
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• Our discussion so far have focused on 1D arrays.

– One class of 2D arrays consist of 1D arrays having other 1D arrays
as their elements, in which case their gain functions can be formu-
lated after multiplying the array factors of two 1D arrays and the
effective length of the smallest element of the arrays.

– We have shown examples illustrating how antenna beams with
relatively small solid angles Ωo and directivities D = 4π

Ωo
can be

generated.

– We have shown how phasing can be used to steer the antenna
beam patterns.

• Interference effects which are fundamental to antenna array design are
mainly sensitive to

1. antenna locations, and

2. phases of antenna input currents.

The next example examines these parameters in more detail.

Example 1: We have two identical ŷ-polarized short dipoles. We want to “place” them
and “phase” their input currents in such a way that no power is radiated in +x
direction and there is a gain maximum in −x direction. Determine the required
positions of the dipoles and the relative phases of their input currents.
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Ẽ × H̃
∗

d cos
θx

r−
x̂d

θx (xo, 0, 0)(−xo, 0, 0)

θy

Solution: Let’s place the two ŷ-polarized short dipoles at (0, 0, 0) and (d, 0, 0) as shown
above and drive them with input currents I1 and I2, respectively. For I2 = I1e−jα,
the field phasors of the dipoles at an observation point (xo, 0, 0), xo & d, will
vary as

Ẽ1 ∝ e−jkxo and Ẽ2 ∝ e−jαe−jk(xo−d) = e−jkxoej(kd−α)

having identical proportionality constants. Likewise, at an observation point
(−xo, 0, 0), xo & d, we will have field phasors

Ẽ1 ∝ e−jkxo and Ẽ2 ∝ e−jαe−jk(xo+d) = e−jkxoe−j(kd+α).

Now, in order to have destructive interference between Ẽ1 and Ẽ2 at (xo, 0, 0) we
need to have

ej(kd−α) = −1 ⇒ kd− α = π.

Also to have constructive interference between Ẽ1 and Ẽ2 at (−xo, 0, 0) we need
to have

e−j(kd+α) = 1 ⇒ kd+ α = 0.

Adding and subtracting these equations we find that

kd =
π

2
and α=-π2 .
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Thus

d =
π

2k
=

π

22π
λ

=
λ

4
.

This result makes sense because, with I1 lagging I2 by 90◦ of phase, and Ẽ1 traveling
an extra λ

4 compared to Ẽ2 to lose an additional phase of 90◦, Ẽ1 ends up being

180◦ out of phase with Ẽ1 at (xo, 0, 0), which is the condition for destructive
interference.

Conversely, with I2 leading I1 by 90◦ of phase, but Ẽ2 traveling an extra λ
4 compared

to Ẽ1 to lose that phase lead of 90◦, Ẽ2 ends up being in phase with Ẽ1 at

(−xo, 0, 0), which is the condition for constructive interference.

Example 2*: (Difficult example) Obtain the gain function G(θ,φ) for the 2-element
array examined in Example 2.
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Solution: With I2 = I1e−jα, α = −π
2 and d = λ

4 , we have in the antenna far-field (i.e.,
the region where paraxial approximation justified)

Ẽ(r) = Ẽ1(r)(1 + e−jαejkd cos θx) = Ẽ1(r)(1 + ej
π

2
(cos θx+1))

where

Ẽ1(r) = jηoI1k& sin θy
e−jkr

4πr
θ̂y.

Consequently,
G(θ,φ) = Df(θ,φ)

such that
f(θ,φ) ∝ |&|2| sin θy|

2|1 + ej
π

2
(cos θx+1)|2

and is normalized to a peak value of 1. This is compatible with

G(θ,φ) = D sin2 θy
|1 + ej

π

2
(cos θx+1)|2

4

= D sin2 θy
2 + ej

π

2
(cos θx+1) + e−j π

2
(cos θx+1)

4

= D(1− cos2 θy)
1 + cos(π2 (cos θx + 1))

2

= D(1− sin2 θ sin2 φ)
1 + cos(π2 (sin θ cosφ+ 1))

2
.

A 3D plot of G(θ,φ)/D is shown in the margin.
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