
14 Interference zones, plane waves
• Let’s examine the radiation field of a 1D array of N = 2M + 1 iden-

tical elements located at (nd, 0, 0), with n in the interval −M, · · · −
1, 0, 1, · · ·M having spherical wave field phasors
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Ẽn(r) = jηoInk# sin θn
e−jk|r−x̂nd|

4π|r− x̂nd|θ̂n

where
cos θn = ẑ · r − x̂nd

|r − x̂nd|.

• The total field phasor

Ẽ(r) =
M∑

n=−M

Ẽn(r)

of the array will have different types of spatial variations in different
interference zones or regions :

1. The region

|r| ! 2D2
x

λ
, where Dx = 2Md

is the physical length of the array, is known as Fresnel region or
the near-field radiation zone — in this zone paraxial approximation
cannot be used and the radiation field is highly structured having a
prominent magnitude directly above the array (i.e., for −Md ! x !
Md).
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2. The region
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|r| " 2D2
x

λ
is known as Fraunhoffer region or the far field — this is the zone in
which paraxial approximation works well, and spherical waves arriving
from individual array elements merge to become a single spherical wave
of a higher directivity.

The concept of antenna beam applies only in the Fraunhoffer region.
A beam with a fixed angular width emerges out of the Fresnel region
as Fraunhoffer region is approached, as shown in the cartoon in the
margin (in which an “unphased” broadside array has been assumed in
sketching the far-field beam).

• In addition, it should be noted that

– the region |r| ! few λ will include strong storage fields, whereas

– for |r| " 2D2
x

λ , deep in Fraunhoffer region, spherical waves will
“locally” look like plane waves.

We will next examine the transition between Fresnel and Fraunhof-
fer regions and then examine how spherical waves can be treated
as plane waves over limited regions of space in the far-field.
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• Consider the “phase-delay” of signals arriving from individual elements
of a broadside array on the x-axis to a location (0, r, 0) on the y-axis
as shown in the margin.
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– Clearly, the sample “rays” shown in the margin connecting different
array elements to (0, r, 0) have different lengths even though in
paraxial approximation only one length, r, would be assigned to
all them since nd cos θx = 0 for θx = 90◦.

This discrepancy between r and the actual ray length |rŷ−ndx̂| would
be the cause of the failure of paraxial approximation, except when the
“phase error” caused by the discrepancy is unimportant (because it is
small in radian units).

– The exact phase delay along ray-0 is

Φ0 = kr

since the field phasor arriving along this path from element n = 0
is ∝ e−jkr.

– The exact phase delay along ray-M is

ΦM = k|rŷ − Mdx̂| = k|rŷ − Dx

2
x̂| = k

√
r2 + (

Dx

2
)2

since the field phasor arriving along this path from element n = M
is ∝ e−jk|rẑ−Mdx̂|.
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– The maximum phase error made in paraxial approximation is then

∆Φ = ΦM − Φ0 = k

√
r2 + (

Dx

2
)2 − kr = k(

√
r2 + (

Dx

2
)2 − r)

= kr(

√
1 + (

Dx

2r
)2 − 1).

Note that this phase error vanishes when r → ∞. But for a finite
r, we have, when r " Dx

2 , a finite error of about

∆Φ = kr(

√
1 + (

Dx

2r
)2 − 1)

≈ kr(1 +
1

2
(
Dx

2r
)2 − 1) =

2π

λ

D2
x

8r
=

π

8

2D2
x

λr
,

using the first two terms of the binomial expansion of
√

1 + (Dx
2r )2.
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– Clearly then, if we were to take

2D2
x

λr
! 1 ⇔ r " 2D2

x

λ
then we would have ∆Φ ! π

8
rad,

which is a small enough of a phase error that can actually be
neglected (in particular in multiple-element arrays where the phase
errors due to a multitude of other elements will be even smaller
than π

8 rad or 22.5◦).
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The analysis just concluded indicates that the border between
Fresnel and Fraunhoffer zones can be taken as

r ∼ 2D2
x

λ
,

the so-called Rayleigh distance.

• Consider now an N -element broadside array (like the one just consid-
ered) having a far-field gain function (from Lecture 12)

G(θ, φ) = D sin2 θ
sin2(N

2 kd sin θ cos φ)

N2 sin2(1
2kd sin θ cos φ)

.

The array gain

G(90◦, φ) = D
sin2(N

2 kd cos φ)

N2 sin2(1
2kd cos φ)

on θ = 90◦ has its “first nulls” around the mainlobe at angles φ, or
γ ≡ 90◦ − φ, satisfying

N

2
kd cos φ =

2π/λ

2
Nd︸︷︷︸ sin γ = ±π ⇒ Dx sin γ = ±λ,

Dx

so that “beam-width between first nulls” is
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for Dx " λ.
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• Approximately speaking, the “half-power beam width” between the
points of D/2 in the gain-pattern works out to be

HPBW ≈ 1

2
BWFN =

λ

Dx

in radian units.

• Multiplying the HPBW with the Rayleigh distance we find that

HPBW × 2D2
x

λ
=

λ

Dx
× 2D2

x

λ
= 2Dx,

which indicates that at the border of Fraunhoffer region the “antenna
beam” between its half-power points is about twice as wide in the trans-
verse direction as the physical size of the array, as shown in the cartoon
in the margin. This is a “physical picture” that should be kept in mind
(and can be easily extrapolated into Fresnel and Fraunhoffer regions
when needed).
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– Note that increasing the array size Dx causes:
1. A larger Rayleigh distance,
2. A thicker column of radiation field in Fresnel region,
3. A narrower HPBW in Fraunhoffer region.

The inverse relation between antenna size Dx and the HPBW, that can
be summarized as

HPBW × Dx = λ,
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is reminiscent of “uncertainty relation” from quantum mechanics as well
as the relation between bandwidth and impulse response length of filter
circuits — underlying all such relationships is of course a Fourier trans-
form pair (between frequency response and impulse response in filter
circuits; between momentum and position wave functions in quantum
mechanics; between effective length function and spatial current distri-
bution in antennas).

• In the Fraunhoffer region, we can express the radiation field of a ẑ-
polarized antenna or antenna array as

Ẽ(r) = jηoIok#eff(θ, φ) sin θ
e−jkr

4πr
θ̂.

– This “globally” spherical-wave field can be considered a plane-wave
field “locally” in any neighborhood of

r = ro ≡ (xo, yo, zo) = (ro, θo, φo)

within the Fraunhoffer region. x
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– The expression for plane-wave approximation in the neighborhood
of r = ro is simply

Ẽp(r) ≡ jηoIok#eff(θo, φo) sin θo
e−jkr̂o·r

4πro
θ̂o,

where
r̂o ≡

ro

|ro|
.
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This phasor expression, that approximates the spherical wave pha-
sor in the neighborhood of r = ro, and is identical to Ẽ(r) at
r = ro, is recognized as a plane wave because it has the same
numerical value (as a complex vector) on planes of constant phase
defined by

kr̂o · r = const.
perpendicular to unit vector r̂o. This is a plane wave propagating
in direction r̂o and is assigned a wave vector

k = kr̂o.

More on the wave vector concept later on...

• Notice that the plane-wave field Ẽp(r) can also be expressed more com-
pactly as

Ẽp(r) = θ̂o|Ẽ(ro)|e−jkr̂o·r,

disregarding a possible phase offset (position independent) equal to the
angle of jIo#eff(θo, φo). x
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• The deviation of this plane-wave field from the spherical-wave field
Ẽ(r), as r departs from ro, will be dominated by the discrepancies
in phase variations of Ẽ(r) and Ẽp(r), rather than the much slower
variation of |Ẽ(r)| with respect to |Ẽp(r)|.
That is, the wave-front curvature of spherical Ẽ(r) will be the main
cause of the differences that emerge between Ẽ(r) and Ẽp(r) as r de-
parts from ro.
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We next determine the size of a region around r = ro where this wave-
front curvature can be neglected. Our criterion will be to keep the phase
discrepancy between Ẽ(r) and Ẽp(r) due to wave front curvature sufficiently
small.

• For simplicity, let
ro = roŷ

and compare the phase delay of phasorsẼp(r) and Ẽ(r) at r = ro + x̂x.

– The phase delay of Ẽp(r) at r = ro + x̂x is

Φp = kro

since ro + x̂x and ro reside on the same constant phase plane of
Ẽp(r) (see margin).

– The phase delay of Ẽ(r) at r = ro + x̂x is

Φ = k|roŷ + xx̂| = k
√

r2
o + x2.

– The phase discrepancy between Ẽp(r) and Ẽ(r) at r = ro + x̂x
because of wave front curvature is then

∆Φ = Φ − Φp = k
√

r2
o + x2 − kro = k(

√
r2
o + x2 − ro)

≈ kro(1 +
1

2

x2

r2
o

− 1) =
2π

λ

x2

2ro
=

π

4

(2x)2

λro

using the first two terms of the binomial expansion of
√

1 + x2

r2
o
.
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– Clearly then, if we were to take
(2x)2

λro
- 1 ⇔ 2x <

√
λro then we would have ∆Φ - π

4
rad.

Thus, plane-wave approximation of a spherical wave about
position ro will have negligible errors within a box with di-
mensions less than

√
λro known as Fresnel distance.

– Note that Fresnel distance measuring the size of the region where
plane wave approximation is acceptable grows as the square root
of ro. Smallest meaningful value of Fresnel distance is for

ro =
2D2

x

λ
(Rayleigh distance)

in which case

Fresnel distance =
√

λro =
√

2Dx.

An antenna beam is always (at all |ro|) broader than a Fresnel
distance and thus only portions of an antenna beam can be well
represented by a plane wave. A superposition of many (infinite)
plane waves would be required for an accurate representation of
an entire beam.
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Example: For λ = 10 m (30 MHz) and ro = 100 km, we have
√

λro = 1
km. So at a distance of 100 km away from an HF source the wave field
looks planar over a neighborhood of about less than a km in extent (or
about 100 wavelengths).
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