15 Plane-wave form of Maxwell's equations, propagation in arbitrary direction

Having seen how EM waves are generated by radiation sources and how spherical TEM waves develop a "planar" character over increasingly large regions as they propagate away from their sources, it is time to shift our attention to propagation and guidance phenomena using a plane-wave formalism.

Perhaps the most "practical" rationalization of this switch from spherical to plane-wave emphasis is that waves produced by compact sources invariably "look" planar at the scales of practical receiving systems (that will study near the end of this course) situated afar.

- We wish to study wave solutions of Maxwell's equations exhibiting the planar phasor form

$$
\tilde{\mathbf{E}}=\mathbf{E}_{o} e^{-j \mathbf{k} \cdot \mathbf{r}}=\hat{e} E_{o} e^{-j \mathbf{k} \cdot \mathbf{r}}
$$

and time-domain variations

$$
\begin{aligned}
\operatorname{Re}\left\{\tilde{\mathbf{E}} e^{j \omega t}\right\} & =\operatorname{Re}\left\{\mathbf{E}_{o} e^{j(\omega t-\mathbf{k} \cdot \mathbf{r})}\right\} \\
& =\hat{e}\left|E_{o}\right| \cos \left(\omega t-\mathbf{k} \cdot \mathbf{r}+\angle E_{o}\right)
\end{aligned}
$$

where wave vector \mathbf{k} is to be found in compliance with ω and Maxwell's equations according to some specific "dispersion relation" including the details of the propagation medium.

- For simplicity, the above phasor has been declared to be linearly polarized. Circular or elliptic polarized wave fields can be constructed later on via superposition methods.
- Linearly polarized wave field phasor above can be expanded as

$$
\tilde{\mathbf{E}}=\mathbf{E}_{o} e^{-j \mathbf{k} \cdot \mathbf{r}}=\mathbf{E}_{o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}
$$

assuming a wave vector

$$
\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)=\hat{x} k_{x}+\hat{y} k_{y}+\hat{z} k_{z}
$$

expressed in terms of its projections $\left(k_{x}, k_{y}, k_{z}\right)$ along the Cartesian coordinate axes (x, y, z).

- A special case we are familiar with is

$$
k_{x}=k_{y}=0, k_{z}>0, \text { when } \mathbf{k}=k_{z} \hat{z}=k \hat{z} \text { and } e^{-j \mathbf{k} \cdot \mathbf{r}}=e^{-j k z}
$$

as in plane TEM waves travelling in $+z$ direction having a

$$
\text { wavelength } \lambda=\frac{2 \pi}{k} \text { and propagation speed } v_{p}=\frac{\omega}{k} \text {. }
$$

- Likewise, the case

$$
k_{y}=k_{z}=0, k_{x}>0, \text { when } \mathbf{k}=k_{x} \hat{x}=k \hat{x} \text { and } e^{-j \mathbf{k} \cdot \mathbf{r}}=e^{-j k x}
$$

corresponds to plane TEM waves travelling in $+x$ direction with the same wavelength and propagation speed.

- The general case with non-zero components $\left(k_{x}, k_{y}, k_{z}\right)$ corresponds to a plane wave propagating in the direction of unit vector

$$
\hat{k} \equiv \frac{\mathbf{k}}{k}=\frac{\left(k_{x}, k_{y}, k_{z}\right)}{k} \text { where } k \equiv|\mathbf{k}|=\sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}=\frac{2 \pi}{\lambda}
$$

and also having the same wavelength and propagation speed as above. Wavelength λ now describes the shift invariance of the wave field in spatial \hat{k} direction, i.e., the propagation direction.

Example 1: A plane wave electric field phasor is specified as

$$
\tilde{\mathbf{E}}=\hat{z} e^{-j(3 \pi x-4 \pi y)} \frac{\mathrm{V}}{\mathrm{~m}}
$$

Determine the propagation direction \hat{k}, wavenumber $k=|\mathbf{k}|$, wavelength $\lambda=\frac{2 \pi}{k}$ and wave frequency $f=\frac{\omega}{2 \pi}$ assuming a propagation speed $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Solution: Contrasting $\tilde{\mathbf{E}}$ with $e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}$, we note that

$$
k_{x}=3 \pi \frac{\mathrm{rad}}{\mathrm{~m}}, k_{y}=-4 \pi \frac{\mathrm{rad}}{\mathrm{~m}}, k_{z}=0 .
$$

Hence, wave vector

$$
\mathbf{k}=\hat{x} k_{x}+\hat{y} k_{y}+\hat{z} k_{z}=3 \pi \hat{x}-4 \pi \hat{y} \frac{\mathrm{rad}}{\mathrm{~m}}
$$

and wave number

$$
k=|\mathbf{k}|=\sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}=\sqrt{(3 \pi)^{2}+(4 \pi)^{2}+0^{2}}=\sqrt{25 \pi^{2}}=5 \pi \frac{\mathrm{rad}}{\mathrm{~m}} .
$$

The propagation direction is specified by the unit vector

$$
\hat{k}=\frac{\mathbf{k}}{k}=\frac{3 \pi \hat{x}-4 \pi \hat{y}}{5 \pi}=0.6 \hat{x}-0.8 \hat{y} .
$$

The wavelength is

$$
\lambda=\frac{2 \pi}{k}=\frac{2 \pi}{5 \pi}=0.4 \mathrm{~m}
$$

Since

$$
c=v_{p}=\frac{\omega}{k}
$$

in general, it follows that

$$
\omega=k c=5 \pi \times 3 \times 10^{8}=2 \pi \times 7.5 \times 10^{8} \frac{\mathrm{rad}}{\mathrm{~s}}
$$

and

$$
f=\frac{\omega}{2 \pi}=750 \times 10^{6} \mathrm{~Hz}=750 \mathrm{MHz}
$$

- Based on what we learned in ECE 329, we recognize that the wave analyzed in Example 1 must have been propagating in free space.
- What are the constraints on wave vector \mathbf{k} for plane waves propagating in arbitrary media?

To answer the above question, we will return to macroscopic-form Maxwell's equations written in phasor form (see margin) and examine under which conditions phasor solutions

$$
\propto e^{-j \mathbf{k} \cdot \mathbf{r}}
$$

can be applicable for all the field quantities in the absence of source currents $\tilde{\mathbf{J}}$ and their accompanying $\tilde{\rho}$.

$$
\begin{aligned}
\nabla \cdot \tilde{\mathbf{D}} & =\tilde{\rho} \\
\nabla \cdot \tilde{\mathbf{B}} & =0 \\
\nabla \times \tilde{\mathbf{E}} & =-j \omega \tilde{\mathbf{B}} \\
\nabla \times \tilde{\mathbf{H}} & =\tilde{\mathbf{J}}+j \omega \tilde{\mathbf{D}}
\end{aligned}
$$

- First, we note that in view of relation

$$
\tilde{\mathbf{D}}=\epsilon \tilde{\mathbf{E}},
$$

we can have plane-wave solutions of the form

$$
\tilde{\mathbf{D}}=\mathbf{D}_{o} e^{-j \mathbf{k} \cdot \mathbf{r}} \text { and } \tilde{\mathbf{E}}=\mathbf{E}_{o} e^{-j \mathbf{k} \cdot \mathbf{r}}
$$

if and only if ϵ does not depend on position \mathbf{r} (why?).

- Likewise, relation

$$
\tilde{\mathbf{B}}=\mu \tilde{\mathbf{H}},
$$

implies plane-wave solutions

$$
\tilde{\mathbf{B}}=\mathbf{B}_{o} e^{-j \mathbf{k} \cdot \mathbf{r}} \text { and } \tilde{\mathbf{H}}=\mathbf{H}_{o} e^{-j \mathbf{k} \cdot \mathbf{r}}
$$

if and only if μ does not depend on position \mathbf{r} (why?).
where (constitutive relations)

$$
\begin{aligned}
& \tilde{\mathbf{D}}=\epsilon \tilde{\mathbf{E}} \\
& \tilde{\mathbf{B}}=\mu \tilde{\mathbf{H}} \\
& \tilde{\mathbf{J}}_{c}=\sigma \tilde{\mathbf{E}} .
\end{aligned}
$$

- In a homogeneous region where ϵ, μ, and σ are, by definition, independent of \mathbf{r}, plane-wave solutions of phasor-form Maxwell's equations given in the margin become possible provided that

$$
\begin{aligned}
-j \mathbf{k} \cdot \tilde{\mathbf{D}} & =\tilde{\rho} \\
-j \mathbf{k} \cdot \tilde{\mathbf{B}} & =0 \\
-j \mathbf{k} \times \tilde{\mathbf{E}} & =-j \omega \tilde{\mathbf{B}} \\
-j \mathbf{k} \times \tilde{\mathbf{H}} & =\tilde{\mathbf{J}}+j \omega \tilde{\mathbf{D}} .
\end{aligned}
$$

We have obtained these vector-algebraic relations from phasor-form Maxwell's equations in the margin after replacing the vector-differential operator ∇ by the vector-algebraic operator $-j \mathbf{k}$.

The justification of this simple procedure is as follows:

If

$$
\tilde{\mathbf{D}}=\mathbf{D}_{o} e^{-j \mathbf{k} \cdot \mathbf{r}}=\mathbf{D}_{o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}=\left(D_{x o}, D_{y o}, D_{z o}\right) e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}
$$

then

$$
\begin{aligned}
\nabla \cdot \tilde{\mathbf{D}} & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) \cdot\left(D_{x o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}, D_{y o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}, D_{z o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}\right) \\
& =-j k_{x} D_{x o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}-j k_{y} D_{y o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}-j k_{z} D_{z o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)} \\
& =-j\left(k_{x}, k_{y}, k_{z}\right) \cdot\left(D_{x o}, D_{y o}, D_{z o}\right) e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}=-j \mathbf{k} \cdot \tilde{\mathbf{D}} .
\end{aligned}
$$

Likewise, if

$$
\tilde{\mathbf{E}}=\mathbf{E}_{o} e^{-j \mathbf{k} \cdot \mathbf{r}}=\mathbf{E}_{o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}=\left(E_{x o}, E_{y o}, E_{z o}\right) e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}
$$

then

$$
\begin{aligned}
\nabla \times \tilde{\mathbf{E}} & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) \times\left(E_{x o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}, E_{y o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}, E_{z o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}\right) \\
& =\left(-j k_{x},-j k_{y},-j k_{z}\right) \times\left(E_{x o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}, E_{y o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}, E_{z o} e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)}\right) \\
& =-j \mathbf{k} \times \tilde{\mathbf{E}} .
\end{aligned}
$$

The vector-algebraic relations above, repeated in the margin (after canceling out some common terms), are known as plane-wave form of Maxwell's equations.

- Plane-wave form ME in the margin provide us with the constraints such plane waves satisfy in various types of propagation media categorized according to ϵ, μ, and σ.

Plane-wave form of Maxwell's equations:

$$
\begin{aligned}
-j \mathbf{k} \cdot \tilde{\mathbf{D}} & =\tilde{\rho} \\
\mathbf{k} \cdot \tilde{\mathbf{B}} & =0 \\
\mathbf{k} \times \tilde{\mathbf{E}} & =\omega \tilde{\mathbf{B}} \\
-j \mathbf{k} \times \tilde{\mathbf{H}} & =\tilde{\mathbf{J}}+j \omega \tilde{\mathbf{D}} .
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{k} \cdot \tilde{\mathbf{D}} & =0 \\
\mathbf{k} \cdot \tilde{\mathbf{B}} & =0 \\
\mathbf{k} \times \tilde{\mathbf{E}} & =\omega \tilde{\mathbf{B}} \\
-\mathbf{k} \times \tilde{\mathbf{H}} & =\omega \tilde{\mathbf{D}} .
\end{aligned}
$$

The first two constraints tell us that wave vector \mathbf{k} is necessarily orthogonal to both $\tilde{\mathbf{D}}=\epsilon \tilde{\mathbf{E}}$ and $\tilde{\mathbf{B}}=\mu \tilde{\mathbf{H}}$.

- Hence, the plane waves satisfying the above equations will be TEM.
- Cross-multiplying the third equation with \mathbf{k} and substituting from the fourth equation we get

$$
\mathbf{k} \times(\mathbf{k} \times \tilde{\mathbf{E}})=\omega \mu \mathbf{k} \times \tilde{\mathbf{H}}=\omega \mu(-\omega \tilde{\mathbf{D}})=-\mu \epsilon \omega^{2} \tilde{\mathbf{E}}
$$

But then

$$
\mathbf{k} \times(\mathbf{k} \times \tilde{\mathbf{E}})=-|\mathbf{k}|^{2} \tilde{\mathbf{E}}
$$

since vectors \mathbf{k} and $\tilde{\mathbf{E}}$ are perpendicular as shown in the margin -cross-multiplying $\tilde{\mathbf{E}}$ twice by \mathbf{k} produces $-\tilde{\mathbf{E}}$ times the magnitude square of \mathbf{k}, i.e. $\mathbf{k} \cdot \mathbf{k}=|\mathbf{k}|^{2}$!

- The above lines are compatible if and only if

$$
\mathbf{k} \cdot \mathbf{k}=\omega^{2} \mu \epsilon \quad \Rightarrow \quad k \equiv|\mathbf{k}|=\omega \sqrt{\mu \epsilon} .
$$

Hence, plane-wave solutions

$$
\propto e^{-j \omega \sqrt{\mu \hat{k}} \hat{k} \cdot \mathbf{r}}
$$

are allowed as long as

$$
\hat{k} \cdot \tilde{\mathbf{E}}=0 \text { and } \hat{k} \cdot \tilde{\mathbf{H}}=0 .
$$

Furthermore, according to the last two equations in the margin,

Also, the vector identity $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{C} \cdot \mathbf{A}) \mathbf{B}-(\mathbf{B} \cdot \mathbf{A}) \mathbf{C}$
leads to the same result.

Plane-wave form of Maxwell's equations:

$$
\begin{aligned}
\mathbf{k} \cdot \tilde{\mathbf{D}} & =0 \\
\mathbf{k} \cdot \tilde{\mathbf{B}} & =0 \\
\mathbf{k} \times \tilde{\mathbf{E}} & =\omega \mu \tilde{\mathbf{H}} \\
-\mathbf{k} \times \tilde{\mathbf{H}} & =\omega \epsilon \tilde{\mathbf{E}} .
\end{aligned}
$$

$$
\tilde{\mathbf{H}}=\frac{\hat{k} \times \tilde{\mathbf{E}}}{\eta} \text { and } \tilde{\mathbf{E}}=\eta \tilde{\mathbf{H}} \times \hat{k} \text { with } \eta=\sqrt{\frac{\mu}{\epsilon}} .
$$

