
16 Reflection and transmission, TE mode
• Last lecture we learned how to represent plane-TEM waves propagating

in a direction k̂ in terms of field phasors In 1808 Etienne-Loius Malus
discovered that light re-
flected from a surface at an
oblique angle will in general
be polarized differently than
the incident wave on the re-
flecting surface.

This is caused by the differ-
ence of the reflection coeffi-
cients of TE and TM com-
ponents of the incident wave
as we will learn in this lec-
ture. Practical implementa-
tion of the phenomenon in-
clude polarizers and polariz-
ing filters used in optical in-
struments, photography, and
LCD displays.

Ẽ = Eoe
−jk·r and H̃ =

k̂ × Ẽ

η

such that

η =

√
µ

ε
, k = kk̂, k = ω

√
µε, and k · Eo = 0.

Such waves are only permitted in homogeneous propagation media
with constant µ and ε and zero σ.

– The condition of zero σ can be relaxed easily — in that case the
above relations would still hold if we were to replace ε by ε + σ

jω

as we will see later on.

• In this lecture we will examine the propagation of plane-TEM waves
across two distinct homogeneous media having a planar interface be-
tween them.
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• With no loss of generality we can choose unit vector x̂ be the unit-
normal of the interface plane separating medium 1 in the region
x < 0 from medium 2 in the region x > 0.
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• A plane-TEM wave incident onto the interface from medium 1 is as-
signed a wavevector

ki = k1(x̂ cos θ1 + ẑ sin θ1)

by taking ŷ to be orthogonal to ki (see margin).
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This makes the xz-plane the “plane of incidence” and θ1 the “angle of
incidence”, and, furthermore,

– if we were to consider the case of Ẽi = ŷEoe−jki·r we would call the
problem a “TE mode” problem, where TE is short for Transverse
Electric field, and transverse is with respect to the plane of inci-
dence.

– if we were to consider the case of H̃i = ŷHoe−jki·r we would call the
problem a “TM mode” problem, where TM is short for Transverse
Magnetic field, and transverse is, once again, with respect to the
plane of incidence.

This lecture we will examine the TE mode, and next lecture the TM
mode. These different modes have different transmission and reflection
properties. They are easy to study one at a time, and sufficient in
general since all cases can be represented as a superposition of TE and
TM cases.

2



TE mode reflection problem:
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• In TE mode reflection problem, the plane-wave field phasors incident
on the interface between medium 1 and 2 — x = 0 plane — are specified
as

Ẽi = ŷEoe
−jki·r and H̃i =

ki × Ẽi

k1η1
,

where
ki = k1(x̂ cos θ1 + ẑ sin θ1),

and
k1 =

ω

v1
, v1 =

1
√
µ1ε1

, η1 =

√
µ1

ε1
.

– The plane-wave field specified above satisfies Maxwell’s equations
in the homogeneous medium 1 occupying the region x < 0, but if
there were no other fields in media 1 and 2, Maxwell’s boundary
condition equations requiring the continuity of tangential Ẽ and
H̃ across any boundary not supporting a surface current would be
violated.

In order to comply with the boundary condition equations we postulate
a set of reflected and transmitted wave fields in media 1 and 2 as follows:

• In medium 1 we postulate a reflected plane-wave with field phasors

Ẽr = ŷEoΓ⊥e
−jkr·r and H̃r =

kr × Ẽr

k1η1
,
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where
kr = k1(−x̂ cos θ1 + ẑ sin θ1).

• In medium 2 we postulate a transmitted plane-wave with field pha-
sors

Ẽt = ŷEoτ⊥e
−jkt·r and H̃t =

kt × Ẽt

k2η2
,

where
kt = k2(x̂ cos θ2 + ẑ sin θ2).

and
k2 =

ω

v2
, v2 =

1
√
µ2ε2

, η2 =

√
µ2

ε2
.

• To justify our postulates and determine a set of reflection and transmis-
sion coefficients Γ⊥ and τ⊥ — defined in terms of electric field compo-
nents — we will next apply the boundary conditions on x = 0 surface,
where (using x = 0)

Ẽi = ŷEoe
−jk1 sin θ1z, Ẽr = ŷEoΓ⊥e

−jk1 sin θ1z, Ẽt = ŷEoτ⊥e
−jk2 sin θ2z.

Clearly, with these field components tangential continuity of the total
field phasor Ẽ across x = 0 surface will be satisfied for all z if and only
if

e−jk1 sin θ1z + Γ⊥e
−jk1 sin θ1z = τ⊥e

−jk2 sin θ2z,

which is only possible (non-trivially) if
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1. A “phase matching” condition1

k1 sin θ1 = k2 sin θ2

known as Snell’s law is satisfied, and
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2. Γ⊥ and τ⊥ satisfy
1 + Γ⊥ = τ⊥.

• Tangential components of H̃i, H̃r, and H̃t on x = 0 plane are obtained
from

Ẽi = ŷEoe
−jk1 sin θ1z, Ẽr = ŷEoΓ⊥e

−jk1 sin θ1z, Ẽt = ŷEoτ⊥e
−jk2 sin θ2z.

as

ẑ·H̃i =
Eo cos θ1

η1
e−jk1 sin θ1z, ẑ·H̃r = −EoΓ⊥ cos θ1

η1
e−jk1 sin θ1z, ẑ·H̃t =

Eoτ⊥ cos θ2

η2
e−jk2 sin θ2z.

Clearly, given Snell’s law, tangential continuity of the total field phasor
H̃ across x = 0 surface will then be satisfied for all z if and only if

cos θ1
η1

− cos θ1
η1

Γ⊥ =
cos θ2

η2
τ⊥.

Combining this with
1 + Γ⊥ = τ⊥,

1Note that “Snell’s law” can also be interpreted as having the components of wavevectors ki and kt

equal along the interface between media 1 and 2.
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we find that
cos θ1
η1

− cos θ1
η1

Γ⊥ =
cos θ2

η2
(1 + Γ⊥) ⇒ Γ⊥ =

η2 cos θ1 − η1 cos θ2

η2 cos θ1 + η1 cos θ2

and
τ⊥ = 1 + Γ⊥ =

2η2 cos θ1
η2 cos θ1 + η1 cos θ2

.
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• Conclusion: In TE reflection problem, the Fresnel reflection and
transmission coefficients are

Γ⊥ ≡ Eyr

Eyi
=

η2 cos θ1 − η1 cos θ2

η2 cos θ1 + η1 cos θ2
and τ⊥ =

Eyt

Eyi
=

2η2 cos θ1
η2 cos θ1 + η1 cos θ2

,

respectively. The coefficients enable us to express the reflected and
transmitted wave phasors in terms of the incident-wave electric field
phasor at the origin (i.e., Eyi).
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Example 1: Medium 2 is vacuum while medium 1 has µ1 = µo and ε1 = 2εo. Given
that

Ẽi = ŷ5e−jk1(cos 30◦x+sin 30◦z) V
m
,

determine Ẽr, Ẽt, and H̃t.

Solution: We have
η1 =

√
µ1

ε1
=

√
µo

2εo
=

ηo√
2

and η2 = ηo.

Also, according to Snell’s law,

k1 sin θ1 = k2 sin θ2 ⇒ sin θ2 =
k1
k2

sin θ1 =

√
ε1µ1√
ε2µ2

sin θ1 =
√

2 sin 30◦ =
1√
2
,

indicating that
θ2 = 45◦.

Now, the reflection coefficient is

Γ⊥ ≡ Eyr

Eyi
=

η2 cos θ1 − η1 cos θ2
η2 cos θ1 + η1 cos θ2

=
ηo

√
3
2 − ηo√

2
1√
2

ηo
√
3
2 + ηo√

2
1√
2

=

√
3
2 − 1

2√
3
2 + 1

2

≈ 0.268.

The transmission coefficient is

τ⊥ =
Eyt

Eyi
=

2η2 cos θ1
η2 cos θ1 + η1 cos θ2

=
2ηo

√
3
2

ηo
√
3
2 + ηo√

2
1√
2

≈ 1.268.

Consequently, the reflected and transmitted wave phasors are

Ẽr = ŷ(5 × 0.268)e−jk1(− cos 30◦x+sin 30◦z) V
m
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and
Ẽt = ŷ(5 × 1.268)e−jk2(cos 45◦x+sin 45◦z) V

m
.

Finally,

H̃t =
k2 × Ẽt

k2η2
=

(cos 45◦x̂ + sin 45◦ẑ) × ŷ(5 × 1.268)e−jk2(cos 45◦x+sin 45◦z)

ηo

=
(ẑ − x̂)(5 × 1.268)e−jk2(cos 45◦x+sin 45◦z)

120π
√

2

A
m
.
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