
18 Reflecting plates, monopole antennas, corner

reflectors
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TM reflection:
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Γ‖ ≡ −
Er

Ei
=

η2 cos θ2 − η1 cos θ1
η2 cos θ2 + η1 cos θ1

=
Ezr

Ezi

τ‖ ≡
Et

Ei
=

2η2 cos θ1
η2 cos θ2 + η1 cos θ1

.

• In deriving the transmission and reflection rules for TE and TM modes
summarized above we assumed lossless propagation media during the
last two lectures.

• The equations can be easily modified as described next if either medium
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1 or medium 2 or both have non-zero conductivities σ1 and/or σ2.

In general, in the case of a non-insulating medium with a finite con-
ductivity σ, we expect a conduction current J̃ = σẼ, in which case the
plane-wave form of Ampere’s law can be cast as

−jk× H̃ = σẼ + jωεẼ,

= jω(ε +
σ

jω
)Ẽ.

Since this equation differs from the non-conducting case only by having
ε + σ

jω in place of ε, propagation parameters

k = ω
√
µε and η =

√

µ

ε

of non-conducting media are modified as

k = ω

√

µ(ε +
σ

jω
) and η =

√

µ

ε + σ
jω

,

respectively, in homogeneous conducting media. In other words a con-
ducting medium is treated as a dielectric with a permittivity ε + σ

jω .

• Consider the wavenumber

k = ω

√

µ(ε +
σ

jω
)
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in a medium with ε ' σ/ω. In that case — poor conductor approxi-
mation — we can approximate k as

k = ω

√

µ(ε− j
σ

ω
) = ω

√

µε(1− j
σ

ωε
) ≈ ω

√
µε(1− j

σ

2ωε
)

= ω
√
µε− j

1

2

√

µ

ε
σ ≡ k′ − jk′′,

with
k′ ≡ Re{k} ≈ ω

√
µε Propagation constant

and

k′′ ≡ −Im{k} ≈
1

2

√

µ

ε
σ Attenuation constant.

These terms are applicable since

e−jk·r = e−jks = e−j(k′−k′′)s = e−k′′se−jk′s

clearly signify an attenuating plane-wave field with distance s measured
in the direction of a unit vector k̂ such that k introduced above relates
to k = k′ − jk′′ as in

k = k̂(k′ − jk′′).

• Conversely, in a medium where ε * σ/ω — good conductor approxi-
mation — we can approximate k as

k = ω

√

µ(ε− j
σ

ω
) ≈ ω

√

−j
µσ

ω
=
√

−j
√
ωµσ

=
1− j√

2

√
ωµσ = (1− j)

√

πfµσ ≡ k′ − jk′′
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Clearly, in this case the penetration depth δ (recall ECE 329 —
distance for the field to decay one e-fold) is

δ =
1

k′′
=

1√
πfµσ

,

and this quantity vanishes in the limit σ → ∞ — the meaning of this is,
TEM waves cannot penetrate regions of perfect electrical conductors.

Example 1: Consider a plane wave of frequency f = 400 MHz propagating in a con-
ductive medium with conductivity σ = 4×107 S/m. Given that the wave phasor
is

Ẽ(x) = ŷEoe
−jkx = ŷEoe

−k′′xe−jk′x.

determine E(x, t) and H(x, t) and the penetration depth (skin depth) δ as well
as the propagation velocity vp = ω/k′. Assume that µ = µo and ε = εo in the
medium.

Solution: We first note that in this case

σ

ω
=

4× 107

2π × 400× 106
=

1

20π
' ε = εo ≈

1

36π × 109
.

Thus

k′ = k′′ ≈
√

πfµσ =
√

π400× 106 × 4π × 10−7 × 4× 107 = 8π × 104
rad

m
.

Also,

η =

√

µ

ε+ σ
jω

≈
√

jωµ

σ
=

√

2π × 400× 106 × 4π × 10−7

4× 107
∠45◦ = 2π

√
2∠45◦ mΩ.
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Therefore, we have

E(x, t) = ŷEoe
−8π×104x cos(8π × 108t− 8π × 104x)

V

m

and

H(x, t) = ẑ
Eoe−8π×104x

2π
√
2

cos(8π × 108t− 8π × 104x− 45◦)
kA

m
.

The penetration depth is

δ =
1

k′′
=

1

8π × 104
=

1

80π
× 10−3 m,

clearly a small fraction of a millimeter. Finally the propagation velocity is

vp =
ω

k′
=

8π × 108

8π × 104
= 104

m

s
.
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A plane wave is said

to be non-uniform

if the wavevector

k = (kx, ky, kz)

contains a complex

valued component so

that the field is not

constant on planes of

constant phase.

Example 2: A plane TEM wave propagating in air with a phasor

Ẽi(x) = ŷe−j
k1√
2
(x+z)

is incident x = 0 plane at the planar boundary of a good conductor for which
σ ' ωε. Determine the transmitted field phasor Ẽt(x).

Solution: Formally
Ẽt(x) = ŷτ⊥e

−j(k2xx+k2zz)

where, according to Snell’s law,

k2z = k1z =
k1√
2

and

k2x =
√

k22 − k22z ≈
√

−jµσω −
k21
2

≈
√

−jµσω = k′ − jk′′

with
k′ = k′′ =

√

πfµσ.

Thus
Ẽt(x) = ŷτ⊥e

−k′′xe−j(k′x+ k1√
2
z)

which is a non-uniform plane wave since Ẽt is not a constant on planes of
constant phase as a consequence of e−k′′x factor.

The transmission coefficient τ⊥ can be computed using the usual formula for τ⊥, but

with a complex valued cos θ2 obtained from sin2 θ2 + cos2 θ2 = 1 and Snell’s

law, k2 sin θ2 = k1 sin θ1, used with complex k2 and sin θ2 — under the “good

conductor” conditions considered here, it will be the case that |τ⊥| * 1.
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• Assume that medium 2 is a perfect electrical conductor (PEC), i.e.,
σ2 → ∞. In that case

η2 =

√

µ

ε + σ
jω

= 0 (PEC is like a "short"), and
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TE reflection:

Γ⊥ ≡
Eyr

Eyi
=

η2 cos θ1 − η1 cos θ2
η2 cos θ1 + η1 cos θ2

→ −1

τ⊥ ≡
Eyt

Eyi
=

2η2 cos θ1
η2 cos θ1 + η1 cos θ2

→ 0
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TM reflection:

Γ‖ ≡ −
Er

Ei
=

η2 cos θ2 − η1 cos θ1
η2 cos θ2 + η1 cos θ1

=
Ezr

Ezi
→ −1

τ‖ ≡
Et

Ei
=

2η2 cos θ1
η2 cos θ2 + η1 cos θ1

→ 0.

Conclusion: all plane waves incident on a PEC boundary will reflect
in such a way that tangential Ẽ at the bounding surface (this is the
total field summed on the dielectric side of the boundary) is everywhere
zero.

• We will next examine the consequences of this conclusion on antennas
placed near conducting planes.
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Monopole above reflecting surface:

• Consider a a straight wire of a length h “end-fed” by an independent
current source Ĩ(0) = Io connected as shown in the margin between the
wire and an infinite ground plane. For h * λ = 2π

k we may assume a
current distribution

x

z

h

Io

Ĩ(z)

Source current

Image current

PEC

Ĩ(z) = Io.(
z

2h
)u(z)

that drops linearly from Io to 0 across the length of the wire.

We next construct the radiation field of this so-called vertical

monopole antenna by postulating that the monopole will ra-

diate, into the half-space z > 0, like a short-dipole of a length

L = 2h having a triangular current distribution

Ĩd(z) = Io.(
z

2h
)

that matches Ĩ(z) for z > 0 and is considered to be a “image”

current of Ĩ(z) for z < 0.

We justify the postulate by observing that:

1. the field generated by Ĩd(z) is in θ̂ = −ẑ direction on z = 0 surface,
and therefore it satisfies the boundary condition of having zero
tangential Ẽ on the perfectly conducting surface,

2. the field generated by Ĩd(z) also satisfies the boundary condition
of having zero tangential Ẽ on the perfectly conducting surface
of the h-long monopole wire, since the wire is just the upper half
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of a two-wire dipole of length L = 2h (on which the condition is
satisfied ipso facto),

3. Maxwell’s equations (ME) necessarily have a unique solution for
each possible configuration of boundary conditions (BC) — a so-
lution of ME’s matching the given BC is the solution!

x

z

h

Io

Ĩ(z)

Source current

Image current

PEC

In view of above, the radiation field of the monopole is

Ẽ =

{

jηoIok
L
2 sin θ

e−jkr

4πr θ̂ for z > 0

0 for z < 0,

where L
2 should be replaced by h. As this result indicates, a monopole

radiates its entire power to one hemisphere as opposed to a dipole in
free space radiating equally into two hemispheres.

• In the above description of the radiation of the monopole, the bottom
half of the current distribution Ĩd(z) is said to be the “image” of the
source current Ĩ(z) on the monopole. The image is really “imaginary”
in the sense that the “real”, actual, sources of the radiated field Ẽ in
the upper hemisphere are

1. Ĩ(z) on the monopole, and

2. a surface current J̃s(x, y) induced on z = 0 surface in order to
satisfy the BC ẑ × H̃(x, y, 0) = J̃s(x, y).
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• A short monopole of length h * λ radiates half as much power as
a short-dipole of length L = 2h having an equal input current Io.
Therefore Rrad for monopole is half of

Rrad = 20π2(
L

λ
)2 = 20π2(

2h

λ
)2

of the dipole, i.e.,

Rrad,mono = 10π2(
2h

λ
)2 = 40π2(

h

λ
)2

in ohms.

x

z

h

Io

Ĩ(z)

Source current

Image current

PEC

• Directivity of monopole is twice the directivity of short-dipole, i.e.,
D = 3, since the beam solid angle Ωo of the monopole is half the solid
angle of the dipole (why?).

• Finally, a monopole of length h = λ
4 is called a quarter-wave monopole.

– In analogy with a half-wave dipole, the quarter-wave monopole
has a radiation resistance of about 36 ohms and a directivity of
3.28.
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Corner reflector antenna

• The following diagram depicts a “corner reflector” antenna on the left,
and its image based model as a 4-element array.

(a) Corner reflector (b) Image based model

×

×

Dipole

PEC

Dipole

Image

Image

Image

– Note that the image elements in the model have been so selected
that the 4-element array has tangential electric field nulls along
the conducting walls of the corner reflector placed next to the
ẑ-polarized dipole antenna (seen from the top) shown on the left.

– The field of the corner reflector antenna matches the field of the
4-element array in the rightmost quadrant in the diagram bounded
by the diagonal lines. The field can be calculated easily by using
an array factor that depends on the distance of the dipole from
the reflecting corner (see HW).
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