
19 Total internal reflection (TIR) and evanes-
cent waves
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• Consider a TE- or TM-polarized wave (or a superposition) incident on
an interface at x = 0 surface as depicted in the margin at an incidence
angle θ1.

• Independent of the polarization of the incident wave, the angle of trans-
mitted wave θ2 can be found using Snell’s law

k1 sin θ1 = k2 sin θ2 ⇒ √
µ1rε1r sin θ1 =

√
µ2rε2r sin θ2

assuming lossless media on either side of the interface, where

Refractive index:
n = c

vp
=
√

µrεr

µr ≡
µ

µo
and εr ≡

ε

εo

are the relative permeability and permittivity, respectively, of the prop-
agation media. Moreover,

√
µrεr =

√
µε

√
µoεo

=
c

vp
≡ n

above can be referred to as the refractive index of the propagation
medium.

• Snell’s law, expressed in terms of refractive index,

n1 sin θ1 = n2 sin θ2 ⇒ sin θ2 =
n1

n2
sin θ1
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shows that for a given θ1, the corresponding sin θ2 can be in excess of
1 when n1 > n2, that is, for propagation from a high refractive index
(optically thick) material such as glass into a lower refractive index
(optically thin) material such as air.

– For example : if n1
n2

= 1.5 and θ1 = 45◦, then

sin θ2 =
n1

n2
sin θ1 = 1.5 sin 45◦ =

1.5√
2
≈ 1.5

1.41
> 1.

But, sin θ2 in excess of 1 cannot be solved for θ2 as if it were
a “regular” angle1 describing the elevation of vector kt above
the x-axis.

• In general when n1 > n2 and the incidence angle Critical angle:

θc = sin−1 n2
n1

θ1 > sin−1 n2

n1
= sin−1

√
µ2ε2

µ1ε1
≡ θc

we will have sin θ2 in excess of 1 and cos θ2 =
√

1 − sin2 θ2 purely
imaginary.

– in such situations use sin θ2 and cos θ2 =
√

1 − sin2 θ2 directly in
the expressions for kt, Γ, and τ as illustrated below.

1Nor if sin θ2 is complex valued because medium 2 is lossy and we need to use ε2r = ε2
εo

+ σ2
jωεo

in Snell’s
law (as we already did in Lecture 18).
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– as we will see the situation corresponds to having a total internal
reflection (TIR) in medium 1 and establishing an evanescent
wave (a special form of non-uniform plane wave with an imaginary
valued k2x) in medium 2. Total internal reflec-

tion (TIR)

and

evanescent wave

– For example : for n1
n2

= 1.5 we have

θc = sin−1 n2

n1
= sin−1 1

1.5
≈ 41.81◦,

which is less than θ1 = 45◦ which is why we find sin θ2 > 1 in the
above example (see margin for an example plot of this configura-
tion in the context of a glass prism with n = 1.5).

• To understand the field topologies for θ1 > θc = sin−1 n2
n1

let us examine
the reflected and transmitted field phasors for, say, the TE-polarization
as θ1 approaches and then exceeds θc. We will simplify this exercise by TE reflection:
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taking µ1 = µ2 = µo so that the refractive index

n1,2 =
√

εr1,2

in Snell’s law, and so that the reflection and transmission coefficients
for the TE-mode shown in the margin can be expressed as

Γ⊥ =
Eyr

Eyi
=

η2 cos θ1 − η1 cos θ2

η2 cos θ1 + η1 cos θ2
⇒ n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2

and
τ⊥ = 1 + Γ⊥ =

2n1 cos θ1
n1 cos θ1 + n2 cos θ2

.
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We have, using Snell’s law

n1 sin θ1 = n2 sin θ2 ⇒ sin θ2 =
n1

n2
sin θ1,

and, therefore,

cos θ2 =
√

1 − sin2 θ2 =

√

1 − n2
1

n2
2

sin2 θ1

in the coefficients above.

• For
θ1 ≥ θc = sin−1 n2

n1
⇔ sin2 θ1 ≥

n2
2

n2
1

,

we have a purely imaginary

cos θ2 =

√

1 − n2
1

n2
2

sin2 θ1 = ±jα, with α =

√
n2
1

n2
2

sin2 θ1 − 1,

in which case

Γ⊥ =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
=

n1 cos θ1 ∓ jn2α

n1 cos θ1 ± jn2α
= 1∠∓2 tan−1(

n2α

n1 cos θ
).

and
τ⊥ = 1 + Γ⊥ = 1 + 1∠∓ 2 tan−1(

n2α

n1 cos θ
).

Note that
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1. |Γ⊥| = |Eyr/Eyi| = 1 at all θ1 ≥ θc, a condition known as total
internal reflection (TIR).

2. τ⊥ = Eyt/Eyi += 0 in general and therefore a non-zero trans-
mitted field exists in medium 2 despite TIR — this field in
medium 2 has evanescent wave character described below.

• We can express the transmitted TE-mode field phasor for θ1 ≥ θc

as TE reflection:
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Ẽt = ŷEyte
−jkt·r = ŷEyte

−jk2(cos θ2x+sin θ2z)

where
Eyt = Eyi(1 +

n1 cos θ1 ∓ jn2α

n1 cos θ1 ± jn2α
),

k2 sin θ2 = k1 sin θ1 (Snell’s law),

and

k2 cos θ2 = k2(±jα) = ±jk2α, where α =

√
n2
1

n2
2

sin2 θ1 − 1.

Thus,

Ẽt = ŷEyi(1 +
n1 cos θ1 ∓ jn2α

n1 cos θ1 ± jn2α
) e−jk1 sin θ1z e−j(±jk2α)x

= ŷEyi(1 +
n1 cos θ1 ∓ jn2α

n1 cos θ1 ± jn2α
) e−jk1 sin θ1z e±k2αx.
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• Depending on which root we select — + or − — we have two candidate
solutions for medium 2 satisfying the plane-wave form of Maxwell’s
equations.

– One of the solutions blows up as x → ∞, which, therefore cannot
be a physical solution, leaving us with

Ẽt = ŷEyi(1 + Γ⊥)e−jk1 sin θ1ze−k2αx

with

Γ⊥ =
n1 cos θ1 + jn2α

n1 cos θ1 − jn2α
and α =

√
n2
1

n2
2

sin2 θ1 − 1

as our expression for the evanescent wave established during a
total internal reflection event when

θ1 ≥ θc = sin−1 n2

n1
.

– This solution should fit (as we are about to see) the plane-wave
form of Maxwell’s equations with

k = kt = k2(x̂ cos θ2 + ẑ sin θ2) = −jk2αx̂ + k1 sin θ1ẑ

which

1. is perpendicular to Ẽt ∝ ŷ as required — i.e., kt · Ẽt = 0
(Gauss’s law),
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2. implies a complex valued unit vector

k̂ =
kt

k2
= −jαx̂ +

k1
k2

sin θ1ẑ

which satisfies

k̂ · k̂ = −α2 +
k2
1

k2
2

sin2 θ1 = −(
n2
1

n2
2

sin2 θ1 − 1) +
n2
1

n2
2

sin2 θ1 = 1

as required, and
3. implies a transmitted magnetic field intensity phasor

H̃t =
k̂ × Ẽt

η2
=

Eyi

η2
(1+Γ⊥)e−jk1 sin θ1ze−k2αx(−jαẑ−k1

k2
sin θ1x̂)

which is of course transverse to k̂ ipso facto.
– It remains to show that

x̂ · 〈Et ×Ht〉 = 0

so that
x̂ · 〈Ei ×Hi〉 + x̂ · 〈Er ×Hr〉 = 0

— demanded by TIR — is satisfied.
Verification:

〈Et ×Ht〉 =
1

2
Re{Ẽt × H̃∗

t}

=
|Eyi|2|τ⊥|2

2η2
e−2k2αxRe{ŷ × (jαẑ − k1

k2
sin θ1x̂)}

=
|Eyi|2|τ⊥|2

2η2
e−2k2αx

k1
k2

sin θ1ẑ.
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Evidently, timed averaged power flux is directed along the interface
and has no component along x̂ normal to the reflecting interface.

Example 1: Consider a uniform plane wave propagating in quartz with εr = 2.25 and
n =

√
εr = 1.5 incident on a quartz/air interface at an incidence angle of 45◦.

Determine the evanescent field phasor Ẽt established in air outside the quartz
slab. Assume that the incident wave is TE polarized and the wavelength is 1 mm
within the quartz.

Solution: With θ1 = 45◦ and n1 = 1.5, n2 = 1, we have cos θ2 = −jk2α with

α =

√
n2
1

n2
2

sin2 θ1 − 1 =

√
2.25

1
sin2 45◦ − 1 =

√
2.25

2
− 1 =

√
9

8
− 1 =

1

2
√

2
.

Hence,

Γ⊥ =
n1 cos θ1 + jn2α

n1 cos θ1 − jn2α
=

3
2

1√
2

+ j1 1
2
√
2

3
2

1√
2

+ −j1 1
2
√
2

=
3 + j1

3 − j1
=

8 + j6

10
= 0.8 + j0.6

and
τ⊥ = 1 + Γ⊥ = 1.8 + j0.6.

Also, since λ1 = 1 mm, it follows that

k1 =
2π

λ1
= 2π

rad
mm

= kon1 = ko1.5, ko =
k1
1.5

=
4π

3

rad
mm

,

where ko ≡ ω/c is the free space wavenumber also applicable in air (i.e., k2).
Therefore, we have

Ẽt = ŷEyi(1 + Γ⊥)e−jk1 sin θ1ze−k2αx

ŷEyi(1.8 + j0.6)e−j 2π√
2
ze−

2π
3
√
2
x V

m
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where x and z are used in mm units. This is an example of an evanescent field
that “hugs” the the quartz/air interface on the air side.

• To summarize: TIR that occurs when θ1 ≥ θc is accompanied by an
evanescent transmitted wave.

• The evanescent wave: An evanescent wave is a non-

uniform TEM wave since the

field vector in non-uniform

on surfaces of constant phase.

1. has a decaying amplitude with distance away from the reflecting
interface (that is along x) and carries no average power away from
the interface,

2. it exhibits a phase variation along the interface (that is along z)
that matches the phase variations of the incident and reflected
waves in medium 1,

3. it carries average power only along the interface and only close to
the interface because of the e−2k2αx factor — thus it is also known
as a surface wave,

4. it can be perturbed by introducing some new materials into region
2 to start drawing energy towards medium 2 — this is the topic
of frustrated TIR to be examined next.
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Frustrated TIR and tunneling:
• Suppose a silicon atom is brought to a location right next the prism as

shown in the margin where an evanescent wave is present.
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– What happens then to the evanescent and total internal reflected
waves to either sides of the diagonal face of the prism?

– What happens when the atom is replaced by another prism placed,
as shown in the second diagram in the margin, at a distance d away
from the diagonal face?

• In the first instance, the silicon atom will be stretched into a polarized
dipole by the action of the time-varying evanescent electric field outside
the prism and therefore it will radiate like an oscillating Hertzian dipole
antenna at the frequency of the evanescent wave.

• The radiation field of the atomic dipole will then superpose on the
evanescent and internally reflected fields, modifying them both, and
enabling the extraction of power from the incident wave to be trans-
ported away from the TIR interface.

– This is an elementary example of what is known as energy “tun-
neling”.

• The tunneling phenomenon becomes more pronounced when the atom
is replaced with a second prism (a whole array of silicon atoms mixed
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with oxygen atoms) as illustrated in the margin.

– The described phenomenon is known as “frustrated” TIR, because
the presence of the second prism will perturb the reflected wave
substantially when the gap width d between the prisms is a small
fraction of a wavelength λ.

– The double prism arrangement shown in the margin can be used
as a “practical” beam splitter at optical frequencies by adjusting
d/λ.

– A quantitative treatment of the tunneling problem will be pre-
sented in Lecture 24 in a multiple slab geometry involving evanes-
cent regions.
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