19 Total internal reflection (TIR) and evanes-

cent waves
TE reflection:
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shows that for a given 6y, the corresponding sin f, can be in excess of
1 when n; > no, that is, for propagation from a high refractive index
(optically thick) material such as glass into a lower refractive index
(optically thin) material such as air.

— For example: if Z—; = 1.5 and 6; = 45°, then
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But, sinf in excess of 1 cannot be solved for 6, as if it were
a “regular” angle!' describing the elevation of vector k; above

the r-axis.
e In general when n; > no and the incidence angle Critical angle:
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we will have sinf, in excess of 1 and cosfy = \/ 1 —sin% 6, purely
lmaginary.

— 1n such situations use sinf, and cosfy = \/ 1 — sin? 6, directly in
the expressions for k¢, I', and 7 as illustrated below.

'Nor if sin 6, is complex valued because medium 2 is lossy and we need to use €, = Z—i + Jg—io in Snell’s
law (as we already did in Lecture 18).



— as we will see the situation corresponds to having a total internal
reflection (TIR) in medium 1 and establishing an evanescent
wave (a special form of non-uniform plane wave with an imaginary

valued ko,) in medium 2. Total internal reflec-
— For example: for Z—; = 1.5 we have tion (TIR)
1
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which is less than 67 = 45° which is why we find sinfy > 1 in the evanescent wave
above example (see margin for an example plot of this configura-
tion in the context of a glass prism with n = 1.5).

e To understand the field topologies for ; > . = sin™* ”2 let us examine
the reflected and transmitted field phasors for, say, the TE polarization
as 0 approaches and then exceeds 6,.. We will simplify this exercise by TE reflection:
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ek ki
TL172 = ,/67,1’2 f'él ....... 92\ ko sin 6
. . . . _ 0y -75
in Snell’s law, and so that the reflection and transmission coefficients o oy sin 6,
for the TE-mode shown in the margin can be expressed as ~kicos
Ey mycosB; — n cos by ny cos 7 — noycos by Hedtam 1 pediun 2
' = — Lyr __ 1pcosf0y—n cos by
Eyi  mpcosth +mycosty n1 cos 01 + ng cos By E,i — 1cosfy -t cosfa
Eyy _ 219 cos 01
and e o8 0 Ey; 12 cos 01+n1 cos B9
1 1
T.=1+1, =

ny cos 07 + ng cos Oy

3



We have, using Snell’s law
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in the coefficients above.
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1. [I'y| = |Ey/Eyul =1 at all §; > 6, a condition known as total
internal reflection (TIR).

2. 7, = E4/E, # 0 in general and therefore a non-zero trans-
mitted field exists in medium 2 despite TIR — this field in
medium 2 has evanescent wave character described below.

e We can express the transmitted TE-mode field phasor for 6; > 6.
as TE reflection:
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e Depending on which root we select — + or — — we have two candidate
solutions for medium 2 satisfying the plane-wave form of Maxwell’s
equations.

— One of the solutions blows up as £ — oo, which, therefore cannot
be a physical solution, leaving us with
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as our expression for the evanescent wave established during a
total internal reflection event when
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— This solution should fit (as we are about to see) the plane-wave
form of Maxwell’s equations with
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which

1. is perpendicular to E; o ¢ as required — i.e., k; - E; = 0
(Gauss’s law),



2. implies a complex valued unit vector
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3. implies a transmitted magnetic field intensity phasor
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Evidently, timed averaged power flux is directed along the interface
and has no component along £ normal to the reflecting interface.

Example 1: Consider a uniform plane wave propagating in quartz with ¢, = 2.25 and
n = /¢ = 1.5 incident on a quartz/air interface at an incidence angle of 45°.

Determine the evanescent field phasor E; established in air outside the quartz
slab. Assume that the incident wave is TE polarized and the wavelength is 1 mm
within the quartz.

Solution: With 6; = 45° and n; = 1.5, ny = 1, we have cosfy = —jkocx with
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where k, = w/c is the free space wavenumber also applicable in air (i.e., ks).
Therefore, we have
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where x and z are used in mm units. This is an example of an evanescent field

that “hugs” the the quartz/air interface on the air side.

e To summarize: TIR that occurs when 6; > 6. is accompanied by an
evanescent transmitted wave.

e The evanescent wave: An evanescent wave is a non-

uniform TEM wave since the
1. has a decaying amplitude with distance away from the reflecting geld vector in non-uniform

interface (that is along =) and carries no average power away from o, surfaces of constant phase.
the interface,

2. it exhibits a phase variation along the interface (that is along 2)
that matches the phase variations of the incident and reflected
waves in medium 1,

3. it carries average power only along the interface and only close to
the interface because of the e=2#2% factor — thus it is also known
as a surface wave,

4. it can be perturbed by introducing some new materials into region
2 to start drawing energy towards medium 2 — this is the topic
of frustrated TIR to be examined next.



Frustrated TIR and tunneling;:

e Suppose a silicon atom is brought to a location right next the prism as
shown in the margin where an evanescent wave is present.

— What happens then to the evanescent and total internal reflected
waves to either sides of the diagonal face of the prism?

— What happens when the atom is replaced by another prism placed,
as shown in the second diagram in the margin, at a distance d away
from the diagonal face?

e In the first instance, the silicon atom will be stretched into a polarized
dipole by the action of the time-varying evanescent electric field outside
the prism and therefore it will radiate like an oscillating Hertzian dipole
antenna at the frequency of the evanescent wave.

e The radiation field of the atomic dipole will then superpose on the
evanescent and internally reflected fields, modifying them both, and
enabling the extraction of power from the incident wave to be trans-
ported away from the TIR interface.

— This is an elementary example of what is known as energy “tun-
neling”.

e The tunneling phenomenon becomes more pronounced when the atom
is replaced with a second prism (a whole array of silicon atoms mixed
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with oxygen atoms) as illustrated in the margin.

— The described phenomenon is known as “frustrated” TIR, because
the presence of the second prism will perturb the reflected wave
substantially when the gap width d between the prisms is a small
fraction of a wavelength .

— The double prism arrangement shown in the margin can be used
as a “‘practical” beam splitter at optical frequencies by adjusting
d/\.

— A quantitative treatment of the tunneling problem will be pre-

sented in Lecture 24 in a multiple slab geometry involving evanes-
cent regions.
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