
22 Dispersion and propagation in collisionless
plasmas

• TEM plane wave propagation in homogeneous conducting media can
be described in terms of wavenumbers and intrinsic impedances

k = ω

√
µ(ε +

σ

jω
) ≡ k′ − jk′′ and η =

√
µ

ε + σ
jω

≡ |η|ejτ

as we have seen in Lecture 18.
For real valued σ these relations imply complex valued k and η as
well as an ω dependent propagation velocity

vp =
ω

k′
=

1

Re{
√

µ(ε + σ
jω)}

.

Having an ω dependent vp is a telltale sign that propagation
of TEM waves in the medium will be dispersive, meaning that
the shapes of TEM signals waveforms other than co-sinusoids
will be distorted as a consequence of propagation — the dis-
tortion happens because different co-sinusoid components of
the signal having different frequencies ω travel with different
velocities vp and thus fall out of synchronism!

• Dispersion in wave motions can be caused by a variety of reasons in-
cluding the frequency dependence of the medium parameters as well as
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geometrical effects related to the dimensions of the propagation region
in relation to a wavelength.

– For an ohmic medium where σ is real — such as seawater or copper
— wave propagation is both lossy and dispersive.

• An important propagation medium known to be dispersive but lossless
is the “collisionless plasma”, an ionized gas in which collisions of the
charge carriers (with one another) are negligibly small — a collisionless
plasma provides an ideal setting to explore and understand the wave
dispersion effects without having to deal with complications arising
from losses and dissipation.

• A collisionless plasma is essentially a conducting medium with a purely
imaginary conductivity σ (or, equivalently, a dielectric with a relative
permittivity less than one, as we will see).

– To develop the conductivity model for a collisionless plasma we en-
vision a region of volume in free-space containing N free electrons
per unit volume along with N positive ions (e.g., O+ in the ion-
ized portions of the upper atmosphere) which are also free. Each of
these free charge carriers with charge q and mass m respond to an
alternating electric field with a phasor Ẽ as dictated by Newton’s
first law:

m
dv

dt
= qE ⇒ mjωṽ = qẼ
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where ṽ denotes the phasor of particle velocity in sinusoidal steady-
state. With N electrons per unit volume, each carrying a charge
q = −e with a phasor velocity ṽ, we then have a phasor current
density

J̃ = Nqṽ = Nq(
qẼ

mjω
) = −j

Nq2

mω
Ẽ

carried by free electrons only. Positive ions with much larger mass
than the electrons will also carry a similar current density, but with
a much smaller magnitude given the inverse mass dependence of
the expression for J̃. Hence, a reasonable model for a current
density in a collisionless plasma is

J̃ = σẼ with a plasma conductivity σ = −j
Ne2

mω

where the contribution of ions is neglected.
The crucial result above is that conductivity is purely imaginary —
the collisionless plasma is not a resistive but a reactive propagation
medium!

In the absence of collisions, kinetic energy of the charge car-
riers acquired from the wave field is not dissipated (lost) into
heat, but instead returned to the wave field much like energy
exchange in a circuit consisting of a source and an inductor.

• Since TEM wave propagation in conducting media is the same as prop-
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agation in a dielectric with an effective permittivity

ε +
σ

jω
,

a collisionless plasma with ε = εo and conductivity

σ = −j
Ne2

mω

can be treated like a dielectric with a permittivity

εo +
−jNe2

mω

jω
= εo(1−

Ne2

mεo

ω2
) = εo(1−

ω2
p

ω2
),

where

ωp ≡

√
Ne2

mεo

is known as the plasma cutoff frequency (or “plasma frequency” for
short).

With the above definitions,

εr = 1−
ω2
p

ω2
and n =

√
εr =

√
1−

ω2
p

ω2
,

are, respectively, the relative permittivity and refractive index
in a plasma treated as a dielectric, where we also have µ = µo (true
because except for its free carriers, a plasma is essentially a vacuum).
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Hence, in a plasma, TEM waves are described by a wavenumber

k = ω
√
µε = ω

√
µoεoεr ≡ ω

√
µoεo

√
1−

ω2
p

ω2
=

ω

c

√
1−

ω2
p

ω2
,

and an intrinsic impedance

η =

√
µ

ε
=

√
µo

εoεr
=

√
µo/εo√
1− ω2

p

ω2

=
ηo√
1− ω2

p

ω2

,

respectively.

• The collisionless plasma dispersion relation for TEM waves, namely

k =
ω

c

√
1−

ω2
p

ω2

derived above governs the properties of TEM waves to be encountered
in a plasma medium.
It most significantly differs from the free-space dispersion relation

k =
ω

c

by exhibiting a non-linear relationship between ω and k.
As a consequence,

1. The propagation velocity

vp =
ω

k
=

c√
1− ω2

p

ω2

=
c

n
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in a plasma is frequency dependent and a meaningful concept only
for ω > ωp when k is real valued (see next).

2. For ω < ωp, we find a purely imaginary k in which case e−jkz

describes not a propagating wave but an evanescent one (for
which vp is not a relevant concept).

3. The plasma refractive index

n =
c

vp
=

√
1−

ω2
p

ω2

is real valued but less than unity in the propagation regime ω > ωp

and it is imaginary in the evanescence region ω < ωp.

• Topics that remain to be examined over the next two lectures:

1. The distinction between phase and group velocity concepts in
the regime ω > ωp

2. Evanescent plasma waves in the ω < ωp regime and related tun-
neling phenomena.

• We close this lecture with a brief discussion of plasma frequency ωp.

• The parameter

ωp ≡

√
Ne2

mεo
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in the plasma dispersion relation has the dimension of frequency and
grows with the square root of the electron density of the plasma. A
useful formula for the plasma frequency is

ωp = 2πfp with fp ≈
√
80.6N

where fp is quoted in Hz units when N is entered in m−3 units.

– For example, for N = 1012 m−3 as in the Earth’s ionosphere,

fp ≈
√
80.6× 1012 ≈ 9× 106 Hz = 9MHz

and
ωp ≈ 18π Mrad/s.

– A plasma frequency of fp ≈ 9 MHz will have a severe impact on
EM waves in the ionosphere when the wave frequency f = ω

2π is
close to 9 MHz.

– The effect of the plasma on the EM wave will be negligible in the
ionosphere only when f is many orders of magnitude larger than
9 MHz.

• The plasma frequency ωp also has a direct interpretation in terms of
plasma dynamics:

– If all the electrons in a volume of plasma were pulled to one side of
the volume, away from the positive ions within the same volume
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— in analogy to a stretched spring — and then let go, the electron
and ion populations would rush toward one another (because of
electrostatic attraction) and then overshoot (because of inertia)
and reverse their motions to establish a perpetual oscillation at
the frequency fp!

– The plasma frequency fp is a resonance frequency of the plasma
seen as an elastic body.

Example 1: Consider an infinite homogeneous plasma with a plasma frequency of
fp = 10 MHz. Determine the wavelength or the penetration depth — whichever
is relevant — of a TEM wave in the plasma produced by an infinite current sheet
located at x = 0 plane, if the oscillation frequency of the current density is (a)
f = 20 MHz, and (b) f = 5 MHz. Also comment whether the TEM wave is
propagating or evanescent.

Solution: (a) We have, for f = 20 MHz

k =
ω

c

√
1−

ω2
p

ω2
=

2π × 20× 106

3× 108

√
1− (

10

20
)2

=
40π

300

√
1− 1

4
=

√
340π

600
=

√
3π

15

rad
m

.

Hence, the TEM wave produced by the current sheet is “propagating” in that
case (away from x = 0 surface on both sides) and its wavelength is

λ =
2π

k
=

2π
√
3π
15

=
30√
3
= 10

√
3m.

8



(b) For f = 5 MHz

k =
ω

c

√
1−

ω2
p

ω2
=

2π × 5× 106

3× 108

√
1− (

10

5
)2

=
10π

300

√
1− 4 = ±j

√
310π

600
= ±j

√
3π

60

rad
m

where the sign giving rise to the decaying wave away from its source should be
employed. In this case the TEM wave is “evanescent” and its attenuation constant
is

|k| =
√
3π

60

Np
m

.

The corresponding penetration distance (distance over which the wave amplitude
is reduced by an exponential factor of e−1) is

δ =
1

|k| =
60√
3π

=

√
3

π
20m.

Example 2: In Example 1, part (b) what is the attenuation rate of the evanescent
wave in units of dB/m?

Solution: The evanescent field in Example 1 part (b) will vary as

Ẽ(x) = p̂Eoe
−|k|x

in x > 0 region, where p̂ is a unit vector perpendicular to x̂, Eo is the field
strength at x = 0. Also,

|k| =
√
3π

60

Np
m

.
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from the solution of part (b). Therefore, we have

|Ẽ(x = 0)|
|Ẽ(x = 1)m|

=
1

e−|k| = e|k|

and

20 log10
|Ẽ(x = 0)|
|Ẽ(x = 1)m|

= 20 log10 e
|k| = |k|20 log10 e

=

√
3π

60
20 log10 e =

π√
3
log10 e ≈

π√
3
0.434

≈ 0.788
dB
m

which is the attenuation rate of the evanescent field in dB/m units.

Attenuation in dB/m is expressed as the 20 log of the amplitude ratio across a one
meter distance (as we have done above), or, equivalently, as 10 log of the “power”
ratio across a one meter distance.
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