
23 Phase and group velocities and delays
• Propagation velocity

vp =
ω

k
of a co-sinusoid field component

cos(ωt − kz) ⇔ e−jkz

is also known as phase velocity, because vp as defined above, cor-
responds to the speed with which constant phase points (e.g., zero-
crossings of the field) move.

• If the phase velocity is ω dependent — as in dispersive media — then
field components (e.g., Ex, Hy, etc.), which are the superpositions of
co-sinusoids with different frequencies (two, three, several, countless),
can in general be described in terms of an envelope function and a
carrier function (recall AM modulation from ECE 210), each having
its own and distinct velocity.

– The propagation velocity of the envelope is known as group ve-
locity and it can be calculated as

vg =
∂ω

∂k

once the dispersion relation relating k to ω is available.
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– The propagation velocity of the carrier is simply a phase velocity

vp =
ω

k
,

where we use the carrier frequency ωo for frequency ω, and the
carrier wavenumber ko for wavenumber k as illustrated below.

A simple example: Consider the superposition

f(z, t) = cos(ω1t − k1z) + cos(ω2t − k2z)

where wavenumbers k1 and k2 depend on frequencies ω1and ω2 as de-
scribed by some dispersion relation (e.g., the plasma dispersion rela-
tion). Using some trig identities we can re-write f(z, t) as

f(z, t) = 2 cos(
∆ω

2
t − ∆k

2
z) cos(ωot − koz)

where

ωo ≡
ω1 + ω2

2
, ko ≡

k1 + k2

2
, ∆ω = ω2 − ω1, ∆k = k2 − k1.

– Verification: Given the above definitions,

ω1,2 = ωo ∓
∆ω

2
and k1,2 = ko ∓

∆k

2
,

and so

f(z, t) = cos(ω1t − k1z) + cos(ω2t − k2z)
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= cos(ωot − koz +
∆ωt − ∆kz

2
) + cos(ωot − koz − ∆ωt − ∆kz

2
)

= cos(ωot − koz) cos(
∆ωt − ∆kz

2
) − sin(ωot − koz) sin(

∆ωt − ∆kz

2
)

+ cos(ωot − koz) cos(
∆ωt − ∆kz

2
) + sin(ωot − koz) sin(

∆ωt − ∆kz

2
)

= 2 cos(
∆ω

2
t − ∆k

2
z)

︸ ︷︷ ︸
cos(ωot − koz)︸ ︷︷ ︸ .

envelope carrier

In this simplest possible example of superpositioned co-sinusoids (sim-
plest because we only used two components instead of many), both the
envelope function and the carrier function are co-sinusoids.

Assuming that ∆ω % ω1, ω2, the carrier function cos(ωot − koz) is
a co-sinusoid within the same “frequency band” as the superposed co-
sinusoids, while the envelope function 2 cos(∆ωt−∆kz

2 ) is a low-frequency
co-sinusoid residing (in frequency space) outside the signal band.

With that distinction in mind, we identify the propagation velocities of
the carrier and envelope functions as the phase and group velocities of
composite waveform f(z, t) — the phase velocity (describing the carrier
motion) is

vp =
ωo

ko
,

whereas the group velocity (describing the envelope motion) is

vg =
∆ω

∆k
=

ω2 − ω1

k2 − k1
.
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Example 1: Consider the case

∆ω =
ωo

10
and ∆k =

ko

5
.

In that case
vg =

∆ω

∆k
=

ωo/10

ko/5
=

1

2

ωo

ko
=

1

2
vp,

a waveform with half as large a group velocity as the phase velocity — in such
a waveform, the zero-crossings of the carrier will march through the envelope as
demonstrated by an animation on the web site.

Example 2: Determine the group velocity

vg =
∆ω

∆k

of the sum of two co-sinusoidal waves propagating in z direction if ω1 = 99 rad/s,
ω2 = 101 rad/s and the dispersion relation is

ω = k2.

Solution: We can solve this problem by first obtaining k1,2 =
√

ω1,2, and then dividing

∆ω = ω2 − ω1
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by
∆k =

√
ω2 −

√
ω1.

Alternatively, we can approximate ∆ω/∆k by the

partial derivative ∂ω/∂k evaluated at ωo = 100 rad/s

which is at the center of the frequency band flanked by ω1 and ω2.

Both approaches will give about the same result since ∆ω % ωo and the slope ∂ω/∂k
of the ω versus k curve at ω = ωo is nearly the same as the ratio ∆ω/∆k.

Using the second method, we note

ω = k2 ⇒ ∂ω

∂k
= 2k = 2

√
ω.

Therefore, the group velocity of the sum is

vg =
∆ω

∆k
≈ ∂ω

∂k
= 2

√
ω = 20

m
s

after evaluating at ω = ωo = 100 rad/s. You should compare our result above
with the exact value

∆ω

∆k
=

ω2 − ω1√
ω2 −

√
ω1

to convince yourself that both approaches give approximately the same result.
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Example 3: What is the phase velocity of the sum signal in Example 2.

Solution: The phase velocity of the sum signal is

vp =
ωo

ko

where
ωo ≡

ω1 + ω2

2
, ko ≡

k1 + k2

2
, k =

√
ω.

This is well approximated by

vp =
ωo√
ωo

=
100

10
= 10

m
s

.

The exact value can be obtained as

vp =
ωo

ko
=

ω1 + ω2

k1 + k2
=

ω1 + ω2√
ω1 +

√
ω2

.

• Practical signals used in communication applications are more compli-
cated than just the sum of two-co-sinusoids. In general, we are con-
cerned with the superposition of a continuum of co-sinusoids over finite
frequency bands ∆ω. How do we then define the wave envelope and
the carrier in such cases and extend the notion of phase and group
velocities introduced above? This question is addressed next:
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• Consider a sum of many monochromatic waves of frequencies ωm in a
band ∆ω centered about a frequency ωo — such a sum can be repre-
sented as ∑

m

Re{Fmej(ωmt−kmz)}

where Fm are the individual wave amplitudes. Introducing

ωm = ωo + ∆ωm and km = ko + ∆km,

we can re-write the same sum as

Re{ej(ωot−koz)
∑

m

Fme
j∆ωm(t− z

∆ωm/∆km
)}.

Suppose that the band of frequencies ∆ω containing all the components
ωm is sufficiently small so that the ratio

∆ωm

∆km
≈ ∂ω

∂k |ω=ωo

is independent of index m. k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

(ωm, km)

In that case the sum above reduces to

Re{ej(ωot−koz)f(t − z

vg
)}

with
f(t) =

∑

m

Fmej∆ωmt Envelope function
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and
vg =

∂ω

∂k |ω=ωo

Group velocity.

• The above result indicates that a wave signal

s(0, t) = Re{ejωotf(t)} = |f(t)| cos(ωot + ∠f(t))

observed at a location z = 0 will be observed at an arbitrary z > 0 as

s(z, t) = Re{ej(ωot−koz)f(t− z

vg
)} = |f(t− z

vg
)| cos(ωot−koz+∠f(t− z

vg
)).

Such a signal1 would be called an

1. AM signal for the case ∠f(t) = 0 — purely real f(t), requiring
F−m = F ∗

m for ∆ωm = mδω, with m = 0,±1,±2, · · ·,
2. Phase modulated (PM) signal for |f(t)| = const.— f(t) ∝

ejφ(t), requiring F−m = −F ∗
m and |Fm| % 1 for m = ±1,±2, · · ·.

The important point is, the modulation |f(t)| and/or ∠f(t) of the AM
and/or PM signal will travel with the group velocity k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

(ωm, km)

vg =
∂ω

∂k |ω=ωo

.

1Also, the same results apply in the continuum limit of δω → 0 in which case the sum defining f(t) in
terms of Fourier coefficients Fm reduce to an integral defining f(t) in terms its Fourier transform F (ω).
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• The propagation of narrowband signals for which the above deriva-
tion of vg is well justified — bandwidth ∆ω % ωo — is therefore well
described by the phase velocity (for the carrier) and the group velocity
(for the modulation envelope and/or phase) concepts.

– However, for broadband signals where ∆ω ∼ ωo the constancy
of

∆ωm

∆km

over the entire frequency band ∆ω will not hold, and it may be
necessary to define a set of frequency dependent group velocities
associated with sub-bands of ∆ω (see HW).

• In general, the computation of the phase and group velocities of narrow-
band signals requires the knowledge of pertinent dispersion relation, the
algebraic relationship between the wave frequency ω and wavenumber
k. k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

Slope=vp

Slope=vg

Note that:

Phase velocity vp is the slope
of the line from the origin to
the dispersion curve at the
band center.

Group velocity vg is the slope

of the dispersion curve itself

at the band center.

• When the dispersion relation is known, it is useful to display it in the
form of a ω versus k plot as shown in the margin.

– If the plot is a straight line then the waves are dispersionless and
vg = vp.

– However, if the plot is curved (like shown in the margin), then the
waves are dispersive and the phase and group velocities vp and vg

need to be computed separately.
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• The dispersion relation

k =
ω

c

√
1 −

ω2
p

ω2
⇒ c2k2 = ω2 − ω2

p ⇒ ω =
√

c2k2 + ω2
p

for the collisionless plasma has a dispersion curve resembling the one
shown in the margin — waves in a plasma are clearly dispersive.

To obtain the plasma group velocity we take the partial derivative of
the plasma dispersion formula

c2k2 = ω2 − ω2
p

on both sides with respect to variable k, which leads to k

ω

ωo

ko

∆k

ω = ω(k)

∆ω

Slope=vp

Slope=vg

Note that:

Phase velocity vp is the slope
of the line from the origin to
the dispersion curve at the
band center.

Group velocity vg is the slope

of the dispersion curve itself

at the band center.

∂

∂k
(c2k2 = ω2 − ω2

p) ⇒ c22k = 2ω
∂ω

∂k
⇒ ω

k

∂ω

∂k
= c2.

Since
vg =

∂ω

∂k
and vp ≡

ω

k
,

this result indicates that in a plasma

vgvp = c2

with the explicit formulas of

vp =
ω

k
=

c√
1 − ω2

p

ω2

and vg = c

√
1 −

ω2
p

ω2
.
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Note that the phase velocity in the plasma exceeds c at all ω > ωp,
whereas the group velocity is bounded by c.

Einstein’s speed limit of c for motions in the universe is only meant
to apply to energy, mass, and information transport — that list does not
include the phase velocity, since the phase velocity of an unmodulated
carrier is not pertinent for the transfer of energy or mass or information
across space.

– A distant light bulb can be lit by sending an electric field pulse
with an envelope which will travel the intervening distance at the
group velocity of the propagation medium. The light bulb gets
turned on only after the pulse envelope arrives at its location,
independent of how fast (or slow) the pulse carrier moves. Energy
moves with the group velocity2.

• In general, depending on the dispersion relation, it is possible to have
vg < vp as well as vg > vp.

• Also, as just mentioned, it is possible to have vp < c as well as vp > c
(as dictated by the relevant dispersion relation).

• However, vg > c is never possible for any wave motion — if a group
velocity calculation indicates vg > c in some setting, you can be sure
that the dispersion relation used for vg calculation is invalid in that

2A rigorous proof that energy is transported with velocity vg in linear and dispersive media can be
found in Bers, Am. J. Phys., 68, 482 (2000).
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setting and/or the dispersion curve has a shape that precludes the
applicability of the narrowband signal model developed in this lecture.
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