24 Evanescent waves and tunneling

- In this lecture we will explore the tunneling phenomenon associated with evanescent waves established within finite-width regions.

The multi-slab tunneling result to be derived in this lecture will:

1. Enhance our qualitative understanding of the frustrated-TIR example shown back in Lecture 19,
2. Illustrate a methodology based on transmission line analogies to be used in forthcoming lectures on waveguides.

- Consider the three-slab geometry depicted in the margin where a TEM wave field

$$
\tilde{\mathbf{E}}_{i}=\hat{x} E_{i} e^{-j k_{1} z}, \text { accompanied by } \tilde{\mathbf{H}}_{i}=\hat{y} \frac{E_{i}}{\eta_{1}} e^{-j k_{1} z}
$$

is incident from the left in the region $z<-d$ (region 1). As a response a reflected wave

$$
\tilde{\mathbf{E}}_{r}=\hat{x} E_{r} e^{j k_{1} z}, \text { accompanied by } \tilde{\mathbf{H}}_{r}=-\hat{y} \frac{E_{r}}{\eta_{1}} e^{j k_{1} z}
$$

is set up in the same region, as well as

$$
\tilde{\mathbf{E}}_{+}=\hat{x} E_{+} e^{-j k_{2} z}, \text { accompanied by } \tilde{\mathbf{H}}_{+}=\hat{y} \frac{E_{+}}{\eta_{2}} e^{-j k_{2} z}
$$

and

$$
\tilde{\mathbf{E}}_{-}=\hat{x} E_{-} e^{j k_{2} z}, \text { accompanied by } \tilde{\mathbf{H}}_{-}=-\hat{y} \frac{E_{-}}{\eta_{2}} e^{j k_{2} z}
$$

in the region $-d<z<0$ (region 2). Finally, in region $z>0$, we will have

$$
\tilde{\mathbf{E}}_{t}=\hat{x} E_{t} e^{-j k_{3} z} \text {, accompanied by } \tilde{\mathbf{H}}_{t}=\hat{y} \frac{E_{t}}{\eta_{3}} e^{-j k_{3} z} \text {. }
$$

- Our aim is to determine the amplitudes $E_{t}, E_{+}, E_{-}, E_{r}$ in terms of E_{i} using tangential boundary conditions at $z=-d$ and $z=0$.
- We are in particular interested in the ratio of the transmitted power in region 3 to the incident power in region 1 as a function of slab width d as well as the refractive indices n_{1}, n_{2}, and n_{3}, including the case when n_{2} is purely imaginary, the case corresponding to region 2 being in evanescent mode.
- Starting with the boundary at $z=0$, the continuity of tangential $\tilde{\mathbf{E}}$ and $\hat{\mathbf{H}}$ across the boundary requires that

$$
E_{+}+E_{-}=E_{t} \text { and } \frac{E_{+}-E_{-}}{\eta_{2}}=\frac{E_{t}}{\eta_{3}} .
$$

These equations can be solved for E_{t} and E_{-}in terms of E_{+}to obtain

$$
E_{t}=\underbrace{\frac{2 \eta_{3}}{\eta_{3}+\eta_{2}}}_{\tau_{32}} E_{+} \text {and } E_{-}=\underbrace{\frac{\eta_{3}-\eta_{2}}{\eta_{3}+\eta_{2}}}_{\Gamma_{32}} E_{+} \text {. }
$$

Note that we have defined a pair of coefficients representing the interaction at $z=0$ interface: a transmission coefficient τ_{32} and a
reflection coefficient Γ_{32} in terms of intrinsic impedances η_{3} and η_{2} in a manner analogous to similar relations seen in our studies of transmission line (TL) systems (in ECE 329).

- At the boundary on $z=-d$ plane the continuity of tangential $\tilde{\mathbf{E}}$ and $\tilde{\mathbf{H}}$ requires that

$$
E_{i} e^{j k_{1} d}+E_{r} e^{-j k_{1} d}=E_{+} e^{j k_{2} d}+E_{-} e^{-j k_{2} d}
$$

and

$$
\frac{E_{i} e^{j k_{1} d}-E_{r} e^{-j k_{1} d}}{\eta_{1}}=\frac{E_{+} e^{j k_{2} d}-E_{-} e^{-j k_{2} d}}{\eta_{2}}
$$

respectively. To utilize these relations in a close analogy to TL problems we next define an effective field impedance $Z(-d)$ for the $z=-d$ plane as

$$
Z(-d) \equiv \frac{E_{+} e^{j k_{2} d}+E_{-} e^{-j k_{2} d}}{\frac{E_{+} e^{j k_{2} d}-E_{-} e^{-j k_{2} d}}{\eta_{2}}}=\eta_{2} \frac{1+\frac{E_{-}}{E_{+}} e^{-j 2 k_{2} d}}{1-\frac{E_{-}}{E_{+}} e^{-j 2 k_{2} d}}=\eta_{2} \frac{1+\Gamma_{32} e^{-j 2 k_{2} d}}{1-\Gamma_{32} e^{-j 2 k_{2} d}}
$$

Region $1 \quad$ Region $2 \quad$ Region 3

$Z(-d)=\eta_{2} \frac{1+\Gamma_{32} e^{-j 2 k_{2} d}}{1-\Gamma_{32} e^{-j 2 k_{2} d}}$

But, by the boundary condition equations above it is also true that

$$
Z(-d)=\frac{E_{i} e^{j k_{1} d}+E_{r} e^{-j k_{1} d}}{\frac{E_{i} e^{j k_{1} d}-E_{r} e^{-j k_{1} d}}{\eta_{1}}}=\eta_{1} \frac{1+\Gamma_{21}}{1-\Gamma_{21}} \text { where } \Gamma_{21} \equiv \frac{E_{r} e^{-j k_{1} d}}{E_{i} e^{j k_{1} d}}
$$

Solving the above expression for the reflection coefficient Γ_{21} at $z=$ $-d$ plane in terms of impedance $Z(-d)$ we find that

$$
\Gamma_{21}=\frac{Z(-d)-\eta_{1}}{Z(-d)+\eta_{1}}
$$

- The parameters $\Gamma_{32}, Z(-d)$, and Γ_{21} introduced above, bearing a strong analogy to an equivalent TL problem suggested in the margin, are sufficient to calculate the reflected and transmitted powers in our multiple slab problem as follows:

1. We first note that

$$
\left|\Gamma_{21}\right|^{2}=\left|\frac{E_{r} e^{-j k_{1} d}}{E_{i} e^{j k_{1} d}}\right|^{2} \Rightarrow \frac{\left\langle S_{r}\right\rangle}{\left\langle S_{i}\right\rangle}=\frac{\left|E_{r}\right|^{2} / 2 \eta_{1}}{\left|E_{i}\right|^{2} / 2 \eta_{1}}=\left|\Gamma_{21}\right|^{2}
$$

gives the reflectance, the fraction of the time-averaged incident power density reflected by the slab discontinuity back into region 1.
2. Assuming that the slab in region 2 is lossless, the transmittance, the time-averaged power density transmitted into the region 3 has to be

$$
\left\langle S_{t}\right\rangle=\left\langle S_{i}\right\rangle-\left\langle S_{r}\right\rangle=\left\langle S_{i}\right\rangle\left(1-\left|\Gamma_{21}\right|^{2}\right) \Rightarrow \frac{\left\langle S_{t}\right\rangle}{\left\langle S_{i}\right\rangle}=\frac{\left|E_{t}\right|^{2} / 2 \eta_{3}}{\left|E_{i}\right|^{2} / 2 \eta_{1}}=1-\left|\Gamma_{21}\right|^{2}
$$

Region 1 Region 2 Region 3

The upshot is

$$
\frac{\left\langle S_{r}\right\rangle}{\left\langle S_{i}\right\rangle}=\left|\Gamma_{21}\right|^{2} \text { and } \frac{\left\langle S_{t}\right\rangle}{\left\langle S_{i}\right\rangle}=1-\left|\Gamma_{21}\right|^{2}
$$

where

$$
\Gamma_{21}=\frac{Z(-d)-\eta_{1}}{Z(-d)+\eta_{1}}, \quad Z(-d)=\eta_{2} \frac{1+\Gamma_{32} e^{-j 2 k_{2} d}}{1-\Gamma_{32} e^{-j 2 k_{2} d}}, \quad \Gamma_{32}=\frac{\eta_{3}-\eta_{2}}{\eta_{3}+\eta_{2}}
$$

in analogy with an equivalent TL problem. An extension of these relations to an n-slab configuration is straightforward.

Example 1: Assume that regions 1 and 3 are free space whereas region 2 is a plasma slab of some width d and a plasma frequency f_{p}. Determine and plot the transmittance

$$
\frac{\left\langle S_{t}\right\rangle}{\left\langle S_{i}\right\rangle}=1-\left|\Gamma_{21}\right|^{2}
$$

as a function of d if (a) $f=\frac{5}{4} f_{p}$, and (b) $f=\frac{4}{5} f_{p}$.

Solution: (a) In this case the plasma refractive index in the slab is

$$
n_{2}=\sqrt{1-\frac{f_{p}^{2}}{f^{2}}}=\sqrt{1-\left(\frac{4}{5}\right)^{2}}=\sqrt{1-\frac{16}{25}}=\frac{3}{5} .
$$

Hence, with $\eta_{1}=\eta_{3}=\eta_{o}$ and $\eta_{2}=\eta_{o} / n_{2}=5 \eta_{o} / 3$, we have

$$
\Gamma_{32}=\frac{\eta_{o}-\frac{5}{3} \eta_{o}}{\eta_{o}+\frac{5}{3} \eta_{o}}=\frac{3-5}{3+5}=-\frac{2}{8}=-0.25
$$

also, with real $k_{2}=\frac{2 \pi}{\lambda_{2}}$, we have

$$
Z(-d)=\eta_{2} \frac{1+\Gamma_{32} e^{-j 2 k_{2} d}}{1-\Gamma_{32} e^{-j 2 k_{2} d}}=\frac{5}{3} \eta_{o} \frac{1-0.25 e^{-j 4 \pi \frac{d}{\lambda_{2}}}}{1+0.25 e^{-j 4 \pi \frac{d}{\lambda_{2}}}} ;
$$

thus

$$
\Gamma_{21}=\frac{Z(-d)-\eta_{1}}{Z(-d)+\eta_{1}}=\frac{\frac{51-0.25 e^{-j 4 \pi \frac{d}{\lambda}}}{1+0.25 e^{-j 4 \pi \frac{d}{\lambda}}}-1}{\frac{51-0.25 e^{-j 4 \pi} \frac{d}{\lambda_{2}}}{1+0.25 e^{-j 4 \pi \frac{d}{\lambda_{2}}}}+1} .
$$

A plot of the transmittance $1-\left|\Gamma_{21}\right|^{2}$ versus d / λ_{2} is shown in the margin. The transmittance shows a $\lambda_{2} / 2$ periodicity in slab width d in consistency with the periodicity expected for lossless TL systems.

Solution: (b) In this case the plasma refractive index in the slab is

$$
n_{2}=\sqrt{1-\frac{f_{p}^{2}}{f^{2}}}=\sqrt{1-\left(\frac{5}{4}\right)^{2}}=\sqrt{1-\frac{25}{16}}=\sqrt{-\frac{9}{16}}= \pm j \frac{3}{4}
$$

Hence, with $\eta_{1}=\eta_{3}=\eta_{o}$ and $\eta_{2}=\eta_{o} / n_{2}=j \frac{4}{3} \eta_{o}$, we have

$$
\Gamma_{32}=\frac{\eta_{o}-j \frac{4}{3} \eta_{o}}{\eta_{o}+j \frac{4}{3} \eta_{o}}=\frac{3-4 j}{3+4 j}
$$

with unity magnitude, a consequence of evanescence in region 2 ; also, $k_{2}=k n_{2}=$ $-j 3 k / 4$, and we have

$$
Z(-d)=\eta_{2} \frac{1+\Gamma_{32} e^{-j 2 k_{2} d}}{1-\Gamma_{32} e^{-j 2 k_{2} d}}=j \frac{4}{3} \eta_{o} \frac{(3+4 j)+(3-4 j) e^{-3 \pi d / \lambda}}{(3+4 j)-(3-4 j) e^{-3 \pi d / \lambda}} ;
$$

thus

$$
\Gamma_{21}=\frac{Z(-d)-\eta_{1}}{Z(-d)+\eta_{1}}=\frac{j \frac{4}{3} \frac{(3+4 j)+(3-4 j) e^{-3 \pi d / \lambda}}{(3+4 j)-\left(3-4 j e^{-3 \pi d / \lambda}\right.}-1}{j \frac{4}{3}\left(\frac{3+4 j)+(3-4 j) e^{-3 \pi d \lambda}}{(3+4 j)-(3-4 j) e^{-3 \pi d / \lambda}}+1\right.} .
$$

A plot of transmittance $1-\left|\Gamma_{21}\right|^{2}$ versus d / λ is shown in the margin. Note the strong tunneling effect at small d / λ.

Transmittance curve for part (b) when region 2 is in evanescence mode:

Note that adjusting d / λ to about 0.2 sets the transmittance as $1 / 2$, creating in effect a "beam splitter" in reference to our discussions of prisms and tunneling in Lecture 24.

- A fascinating aspect of tunneling is:
- even though the time-averaged Poynting vectors - i.e., the avg power densities - associated with the evanescent wave fields $\tilde{\mathbf{E}}_{+}$ and $\tilde{\mathbf{E}}_{-}$in region 2 are individually zero because of the 90° phase shift between

$$
\tilde{\mathbf{E}}_{+} \text {and } \tilde{\mathbf{H}}_{+} \text {as well as } \tilde{\mathbf{E}}_{-} \text {and } \tilde{\mathbf{H}}_{-} \text {, }
$$

the time-averaged Poynting vector associated with $\tilde{\mathbf{E}}_{+}+\tilde{\mathbf{E}}_{-}$, i.e.,

$$
\frac{1}{2} \operatorname{Re}\left\{\left(\tilde{\mathbf{E}}_{+}+\tilde{\mathbf{E}}_{-}\right) \times\left(\tilde{\mathbf{H}}_{+}+\tilde{\mathbf{H}}_{-}\right)^{*}\right\}
$$

pertinent for region 2, is (as shown in HW) non-zero (and independent of position within region 2) because of the non-zero cross term contributions between

$$
\tilde{\mathbf{E}}_{+} \text {and } \tilde{\mathbf{H}}_{-} \text {as well as } \tilde{\mathbf{E}}_{-} \text {and } \tilde{\mathbf{H}}_{+} .
$$

- By contrast, in propagating regions (i.e., non-evanescent), the cross product terms cancel while "self product" terms determine the net average Poynting vector.

There are many practical implications and applications of tunneling:

- Beam splitters, attenuators, (undesired) interference effect due to coupling of nearby systems ...

Quantum mechanical tunneling:

In quantum physics one talks about probabilities of encountering particles in a given physical system rather than the particle trajectories; furthermore, the probabilities are calculated as magnitude squares (like the average power) of "wave functions" obeying a wave equation (e.g., Schrodinger's equation in case of non-relativistic particles). Since waves in general (including Schrodinger waves) can exhibit tunneling properties across evanescent regions (as shown in this section), finite probabilities can be calculated in quantum mechanics for particles in regions separated from their source regions by classically impenetrable barriers (in which the wave function is evanescent).

Phenomena such as radioactive decay or Ohmic contacts (in metal semi-conductor junctions) can be explained in terms of quantum mechanical tunneling, a counterpart of electromagnetic tunneling studied in this section. Also, quantum mechanical tunneling is fundamental to the operation of "scanning tunneling microscopes" used to image atoms and crystals.

- The transmission line analogy to solve a four-slab problem:

- The relations shown on the diagram can be used to calculate the transmittance $1-\left|\Gamma_{10}\right|^{2}$ from region 0 to region 3 assuming that regions 1 and 2 are lossless.

Example 2: If in the above diagram region 3 is evanescent what would be the transmittance $1-\left|\Gamma_{10}\right|^{2}$?

Answer: In that case the transmittance should be zero (and reflectance unity)!

