
24 Evanescent waves and tunneling

• In this lecture we will explore the tunneling phenomenon associated
with evanescent waves established within finite-width regions.

The multi-slab tunneling result to be derived in this lecture will:

1. Enhance our qualitative understanding of the frustrated-TIR ex-
ample shown back in Lecture 19,

2. Illustrate a methodology based on transmission line analo-

gies to be used in forthcoming lectures on waveguides.
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Ẽr
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• Consider the three-slab geometry depicted in the margin where a TEM
wave field

Ẽi = x̂Eie
−jk1z, accompanied by H̃i = ŷ

Ei

η1
e−jk1z,

is incident from the left in the region z < −d (region 1). As a response
a reflected wave

Ẽr = x̂Ere
jk1z, accompanied by H̃r = −ŷ

Er

η1
ejk1z,

is set up in the same region, as well as

Ẽ+ = x̂E+e
−jk2z, accompanied by H̃+ = ŷ

E+

η2
e−jk2z,

and

Ẽ− = x̂E−e
jk2z, accompanied by H̃− = −ŷ

E−

η2
ejk2z,
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in the region −d < z < 0 (region 2). Finally, in region z > 0, we will
have

Ẽt = x̂Ete
−jk3z, accompanied by H̃t = ŷ

Et

η3
e−jk3z.

– Our aim is to determine the amplitudes Et, E+, E−, Er in terms
of Ei using tangential boundary conditions at z = −d and z = 0.

– We are in particular interested in the ratio of the transmitted
power in region 3 to the incident power in region 1 as a function of
slab width d as well as the refractive indices n1, n2, and n3, includ-
ing the case when n2 is purely imaginary, the case corresponding
to region 2 being in evanescent mode.

• Starting with the boundary at z = 0, the continuity of tangential Ẽ
and H̃ across the boundary requires that
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E+ + E− = Et and
E+ − E−

η2
=

Et

η3
.

These equations can be solved for Et and E− in terms of E+ to obtain

Et =
2η3

η3 + η2
︸ ︷︷ ︸

E+ and E− =
η3 − η2
η3 + η2
︸ ︷︷ ︸

E+.

τ32 Γ32

Note that we have defined a pair of coefficients representing the in-
teraction at z = 0 interface: a transmission coefficient τ32 and a

2



reflection coefficient Γ32 in terms of intrinsic impedances η3 and η2
in a manner analogous to similar relations seen in our studies of trans-

mission line (TL) systems (in ECE 329).

• At the boundary on z = −d plane the continuity of tangential Ẽ and
H̃ requires that

Eie
jk1d + Ere

−jk1d = E+e
jk2d + E−e

−jk2d

and
Eiejk1d − Ere−jk1d

η1
=

E+ejk2d − E−e−jk2d

η2
respectively. To utilize these relations in a close analogy to TL problems
we next define an effective field impedance Z(−d) for the z = −d
plane as

Region 1 Region 2 Region 3
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Z(0) = η3

Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d

Γ32 =
η3 − η2

η3 + η2

Γ21 =
Z(−d) − η1

Z(−d) + η1

η1 η2 η3

Z(−d) ≡
E+ejk2d + E−e−jk2d

E+ejk2d−E−e−jk2d

η2

= η2
1 + E−

E+
e−j2k2d

1− E−
E+

e−j2k2d
= η2

1 + Γ32e−j2k2d

1− Γ32e−j2k2d
.

But, by the boundary condition equations above it is also true that

Z(−d) =
Eiejk1d + Ere−jk1d

Eie
jk1d−Ere−jk1d

η1

= η1
1 + Γ21

1− Γ21
where Γ21 ≡

Ere−jk1d

Eiejk1d
.

Solving the above expression for the reflection coefficient Γ21 at z =
−d plane in terms of impedance Z(−d) we find that

Γ21 =
Z(−d)− η1
Z(−d) + η1

.
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• The parameters Γ32, Z(−d), and Γ21 introduced above, bearing a strong
analogy to an equivalent TL problem suggested in the margin, are suf-
ficient to calculate the reflected and transmitted powers in our multiple
slab problem as follows:

Region 1 Region 2 Region 3
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Z(0) = η3

Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d

Γ32 =
η3 − η2

η3 + η2

Γ21 =
Z(−d) − η1

Z(−d) + η1

η1 η2 η3

1. We first note that

|Γ21|
2 = |

Ere−jk1d

Eiejk1d
|2 ⇒

〈Sr〉

〈Si〉
=

|Er|2/2η1
|Ei|2/2η1

= |Γ21|
2

gives the reflectance, the fraction of the time-averaged incident power
density reflected by the slab discontinuity back into region 1.

2. Assuming that the slab in region 2 is lossless, the transmittance, the
time-averaged power density transmitted into the region 3 has to be

〈St〉 = 〈Si〉−〈Sr〉 = 〈Si〉(1−|Γ21|
2) ⇒

〈St〉

〈Si〉
=

|Et|2/2η3
|Ei|2/2η1

= 1−|Γ21|
2.

The upshot is

〈Sr〉

〈Si〉
= |Γ21|

2 and
〈St〉

〈Si〉
= 1− |Γ21|

2

where

Γ21 =
Z(−d)− η1
Z(−d) + η1

, Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d
, Γ32 =

η3 − η2
η3 + η2

in analogy with an equivalent TL problem. An extension of these rela-
tions to an n-slab configuration is straightforward.
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Example 1: Assume that regions 1 and 3 are free space whereas region 2 is a plasma
slab of some width d and a plasma frequency fp. Determine and plot the trans-
mittance

〈St〉

〈Si〉
= 1− |Γ21|

2

as a function of d if (a) f = 5
4fp, and (b) f = 4

5fp.

Transmittance curve for part
(a) when region 2 is in prop-
agation mode:
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d!Λ2

0.2

0.4

0.6

0.8

1.0
TransmittanceSolution: (a) In this case the plasma refractive index in the slab is

n2 =

√

1−
f 2
p

f 2
=

√

1− (
4

5
)2 =

√

1−
16

25
=

3

5
.

Hence, with η1 = η3 = ηo and η2 = ηo/n2 = 5ηo/3, we have

Γ32 =
ηo −

5
3ηo

ηo +
5
3ηo

=
3− 5

3 + 5
= −

2

8
= −0.25

also, with real k2 =
2π
λ2

, we have

Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d
=

5

3
ηo
1− 0.25e−j4π d

λ2

1 + 0.25e−j4π d
λ2

;

thus

Γ21 =
Z(−d)− η1
Z(−d) + η1

=

5
3
1−0.25e

−j4π d
λ2

1+0.25e
−j4π d

λ2

− 1

5
3
1−0.25e

−j4π d
λ2

1+0.25e
−j4π d

λ2

+ 1
.
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A plot of the transmittance 1 − |Γ21|2 versus d/λ2 is shown in the margin. The

transmittance shows a λ2/2 periodicity in slab width d in consistency with the

periodicity expected for lossless TL systems.

Transmittance curve for part
(b) when region 2 is in
evanescence mode:

0.2 0.4 0.6 0.8 1.0
d!Λ

0.2

0.4

0.6

0.8

1.0
Transmittance

Note that adjusting d/λ to

about 0.2 sets the transmit-

tance as 1/2, creating in effect

a “beam splitter” in reference

to our discussions of prisms

and tunneling in Lecture 24.

Solution: (b) In this case the plasma refractive index in the slab is

n2 =

√

1−
f 2
p

f 2
=

√

1− (
5

4
)2 =

√

1−
25

16
=

√

−
9

16
= ±j

3

4

Hence, with η1 = η3 = ηo and η2 = ηo/n2 = j 43ηo, we have

Γ32 =
ηo − j 43ηo
ηo + j 43ηo

=
3− 4j

3 + 4j

with unity magnitude, a consequence of evanescence in region 2; also, k2 = kn2 =
−j3k/4, and we have

Z(−d) = η2
1 + Γ32e−j2k2d

1− Γ32e−j2k2d
= j

4

3
ηo
(3 + 4j) + (3− 4j)e−3πd/λ

(3 + 4j)− (3− 4j)e−3πd/λ
;

thus

Γ21 =
Z(−d)− η1
Z(−d) + η1

=
j 43

(3+4j)+(3−4j)e−3πd/λ

(3+4j)−(3−4j)e−3πd/λ − 1

j 43
(3+4j)+(3−4j)e−3πd/λ

(3+4j)−(3−4j)e−3πd/λ + 1
.

A plot of transmittance 1 − |Γ21|2 versus d/λ is shown in the margin. Note the

strong tunneling effect at small d/λ.
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• A fascinating aspect of tunneling is: Quantum mechanical
tunneling:

In quantum physics one talks
about probabilities of encounter-
ing particles in a given physi-
cal system rather than the par-
ticle trajectories; furthermore,
the probabilities are calculated
as magnitude squares (like the
average power) of “wave func-
tions” obeying a wave equation
(e.g., Schrodinger’s equation in
case of non-relativistic particles).
Since waves in general (includ-
ing Schrodinger waves) can ex-
hibit tunneling properties across
evanescent regions (as shown in
this section), finite probabilities
can be calculated in quantum me-
chanics for particles in regions
separated from their source re-
gions by classically impenetrable
barriers (in which the wave func-
tion is evanescent).

Phenomena such as radioactive
decay or Ohmic contacts (in
metal semi-conductor junctions)
can be explained in terms of
quantum mechanical tunneling,
a counterpart of electromagnetic
tunneling studied in this section.
Also, quantum mechanical tun-
neling is fundamental to the op-
eration of “scanning tunneling mi-
croscopes” used to image atoms
and crystals.

– even though the time-averaged Poynting vectors — i.e., the avg
power densities — associated with the evanescent wave fields Ẽ+

and Ẽ− in region 2 are individually zero because of the 90◦ phase
shift between

Ẽ+ and H̃+ as well as Ẽ− and H̃−,

the time-averaged Poynting vector associated with Ẽ+ + Ẽ−, i.e.,

1

2
Re{ ˜(E+ + Ẽ−)× ˜(H+ + H̃−)

∗}

pertinent for region 2, is (as shown in HW) non-zero (and inde-
pendent of position within region 2) because of the non-zero cross

term contributions between

Ẽ+ and H̃− as well as Ẽ− and H̃+.

◦ By contrast, in propagating regions (i.e., non-evanescent), the
cross product terms cancel while “self product” terms deter-
mine the net average Poynting vector.

There are many practical implications and applications of tunneling:

– Beam splitters, attenuators, (undesired) interference effect due to
coupling of nearby systems ...
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• The transmission line analogy to solve a four-slab problem:

η1 η2 η3

Z(0) = η3Z(−d) = η2

1 + Γ32e
−j2k2d

1 − Γ32e−j2k2d

Γ32 =
η3 − η2

η3 + η2

Γ21 =
Z(−d) − η1

Z(−d) + η1

η0

Γ10 =
Z(−d − l) − η0

Z(−d − l) + η0

Z(−d − l) = η1

1 + Γ21e
−j2k1l

1 − Γ21e−j2k1l

d
l

– The relations shown on the diagram can be used to calculate the
transmittance 1 − |Γ10|2 from region 0 to region 3 assuming that
regions 1 and 2 are lossless.

Example 2: If in the above diagram region 3 is evanescent what would be the trans-
mittance 1− |Γ10|2?

Answer: In that case the transmittance should be zero (and reflectance unity)!
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