
25 Parallel-plate waveguides — TEm modes
With this lecture we start
our study of guided waves
and resonant cavities.
In ECE 329 you were already
exposed to guided TEM
wave propagation in two-wire
transmission line systems.
Here we will study TE and
TM mode propagation on
parallel-plate transmission-
lines and hollow waveguides.

While guided TEM modes

are dispersion-free and prop-

agate at all frequencies, TE

and TM modes are disper-

sive and exhibit frequency-

dependent cutoff.

• Consider a TE polarized incident field

Ẽi = ŷEoe
−j(−kxx+kzz)

incident on a conducting plate on x = 0 plane as depicted in the margin
so that a reflected wave

Ẽr = −ŷEoe
−j(kxx+kzz)

is produced to ascertain x̂ × (Ẽi + Ẽr) = 0 on x = 0 plane. In these
expressions

k2x + k2z = k2 = ω2µoεo

assuming that the plate is embedded in free space (otherwise use µ and
ε, instead).

z

x

ki kr

Intersections of solid and dashed wavefronts
of the incident and reflected waves demark
the locations of the nulls of the total y-
directed electric field.

σ = ∞

• The incident and reflected waves will then produce a total field

Ẽ = Ẽi + Ẽr = ŷEoe
−jkzz(ejkxx − e−jkxx) = 2jŷEoe

−jkzzsin(kxx)

in z > 0 region which propagates in z-direction with a phase velocity

vpz =
ω

kz

and “stands” in the x-direction.
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• The standing wave in the x-direction is characterized by a magnitude

|Ẽ| ∝ |sin(kxx)|

which has nulls and maxima repeating along the x-direction at intervals

λx

2
where λx ≡

2π

kx
.

– Since there is an electric field null at x = 0, there additional nulls
are located at

x = m
λx

2
, with m = 1, 2, · · ·

z

x

The y-directed total electric field is zero 
at x=0 and x=a surfaces of the guide formed 
by the conducting plates and exhibit maximum
magnitude at the intersections of solid or
dashed wavefront pairs.

Note the 180 degree reversals in the 
reflected phase fronts on both surfaces
(top and bottom)as required by a reflection 
coefficient of -1.

a

σ = ∞

σ = ∞

Now, if a second plate were placed at x = a (as shown in the
margin), such that

a = m
λx

2
=

mπ

kx
m = 1, 2, · · ·

the standing wave pattern would not be perturbed by the new
plate “fitting” the null-tangential field surface, providing us with
the “guiding condition”

kx =
mπ

a
, m = 1, 2, · · ·

of TE-polarized wave fields by a pair of conducting plate separated
by a distance a.
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– m = 0 is not allowed since it leads to kx = 0 and consequently to
Ẽ = 0 for all x — a trivial case of having no field at all!

• For each allowed value of m = 1, 2, · · · we then have guided “TEm

mode” waves having the electric field phasors

Ẽ = 2jŷEoe
−jkzzsin(kxx)

in the region 0 < x < a with

z

x

The y-directed total electric field is zero 
at x=0 and x=a surfaces of the guide formed 
by the conducting plates and exhibit maximum
magnitude at the intersections of solid or
dashed wavefront pairs.

Note the 180 degree reversals in the 
reflected phase fronts on both surfaces
(top and bottom)as required by a reflection 
coefficient of -1.

a

σ = ∞

σ = ∞

kx =
mπ

a

and

kz =
√

k2 − k2x = k

√

1−
k2x
k2

=
ω

c

√

1−
k2xc

2

ω2
=

ω

c

√

1−
ω2
c

ω2
,

where
ωc ≡ kxc =

mπc

a
is known as cutoff frequency of TEm mode.

– The corresponding field in the time domain is obtained by multi-
plying the phasor with ejωt and taking the real part, yielding

E(x, t) = −2ŷEo sin(ωt− kzz)sin(kxx).

Since propagation of the TEm mode field is controlled by kz, the
relationship

kz =
ω

c

√

1−
ω2
c

ω2
=

ω

c

√

1−
f 2
c

f 2
,
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where Example:
for a = 3 cm, m = 1 implies

fc =
mc

2a
=

3× 108

2× 0.03
= 5× 109 Hz

= 5GHz

for TE1mode.
The cutoff frequency for
TE2mode is 10 GHz, for
TE3mode is 15 GHz, and so on.

A signal with 11 GHz fre-

quency will propagate in TE1 and

TE2mode, but will be evanescent

in TE3and higher order modes.

ωc = kxc =
mπc

a
and fc ≡

ωc

2π
=

mc

2a
,

is the dispersion relation of the TEm mode, from which it follows
that:

1. Propagation takes place if f > fc =
mc
2a , and evanescence oth-

erwise, and

2. Phase and group velocities

vpz ≡
ω

kz
=

c
√

1− f2c
f2

and vg ≡
∂ω

∂kz
= c

√

1−
f 2
c

f 2

in analogy with plasma dispersion (identical except for the inter-
change of ωc with ωp).

• The component TEM waves that satisfy the condition

λf = c ⇔
ω

k
= c

and superpose to form the TEm mode have a wavelength, for

f = fc =
mc

2a
,

given by

z

x

Note that cutoff-wavelength=2a/m is also
the "trace wavelength" in x-direction.

a

σ = ∞

σ = ∞

λx = λc θ

λ

λ =
c

f
=

c

fc
=

c
mc
2a

=
2a

m
≡ λc.
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Consequently, the TEm mode dispersion relation can also be cast as

kz =
ω

c

√

1−
f 2
c

f 2
=

ω

c

√

1−
c2

λ2
cf

2
=

ω

c

√

1−
λ2

λ2
c

;

note that:

1. The “cutoff wavelength”

λc =
2a

m
can be remembered to be “twice the guide width a divided by the
mode number m”,

2. The factor λ
λc

can be used to replace the factor fc
f that appears in

all of the expressions given above (and below).

z

x

Note that cutoff-wavelength=2a/m is also
the "trace wavelength" in x-direction.

a

σ = ∞

σ = ∞

λx = λc θ

λ

3. Finally, since kx =
mπ
a , we have

λc =
2a

m
=

2π

kx
= λx

at any frequency f .

• Each permissible kx (or mode) at a given operation frequency ω is
associated with an incidence and reflection angle θ (see margin) of the
component TEM waves superposing, which is given by

cos θ =
kx
k

=
λ

λx
=

λ

λc
=

fc
f

⇒ θ = cos−1 λ

λc
= cos−1 fc

f
,
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indicating that as f → fc, θ → 0, that is at f = fc (at cutoff), the field
consists of plane waves bouncing back and forth between the plates at
x = 0 and x = a at normal incidence (see margin).

z

x

At cutoff (f=f_c) we have k_z=0 and thus
TEM waves bouncing between the plates in
exclusively x direction, carrying no energy
in z-direction. 

a

σ = ∞

σ = ∞

λx = λc = λ

Guide wavelength: The com-
ponent TEM waves that super-
pose to form the TEm mode so-
lutions have a wavelength

λ =
2π

k

as usual. We define

λz ≡
2π

kz
=

2π

k
√

1− f2
c

f2

=
λ

√

1− f2
c

f2

to be the guide wavelength λg.
Note the distinction between

λg =
2π

kz
= λz

and

λc =
2π

kx
= λx.

• Component waves superposing to constitute the guided field can be
viewed as reflections of one another from the guide plates, produced
(self-consistently) by surface currents induced on the conducting walls
of the guide at x = 0 and x = a.

z

x

a

σ = ∞

σ = ∞

Below, we re-derive the “guidance condition”

kx =
mπ

a

for TEm modes — with reference to the diagram shown above — by requiring
“a phase consistency” between the reflected wave-pairs “responsible for one
another”:

• Note the four of the phase fronts in the diagram above (repeated in the
margin) belonging, in pairs, to the “upgoing” and “downgoing” compo-
nent TEM waves of y-polarized electric field have been highlighted by
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the colors red and blue, and green and magenta, respectively. Indicat-
ing the phases on these singled out phase fronts as φr, φb, φg, and φm,
we note in succession that

–

φb = φr − kxa

because of phase delay kxa in the upgoing wave over an excursion
by a along the x-axis,

z

x

a

σ = ∞

σ = ∞

–

φg = φb + ∠Γ,

where Γ=-1 is the reflection coefficient on the upper plate con-
verting the upgoing electric field wave into a downgoing wave (to
which φg belongs),

–

φm = φg − kxa

because of phase delay kxa in the downgoing wave over an excur-
sion by a along the x-axis,

–

φr = φm + ∠Γ,

where Γ=-1 is the reflection coefficient on the lower plate con-
verting the downgoing wave into an upgoing wave (to which φr

belongs).
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– Now back-substituting in the expression for φr the expressions for
φm, φg, φb in succession, we find that

φb = φr − kxa,

φg = φb + ∠Γ,

φm = φg − kxa,

φr = φm + ∠Γ.

z

x

a

σ = ∞

σ = ∞

φr = φr − 2(kxa− ∠Γ)

Requiring ∠Γ to lie in the range −π < ∠Γ ≤ π, and given the
inherent 2π ambiguities permitted for a wave phase (because of
the non-discriminatory response of co-sinusoids to phases differing
by integer multiples of 2π), this condition implies that we can take

kxa− ∠Γ = nπ, n = 0, 1, 2, · · ·

since kxa is by definition non-negative. With

Γ = −1 ⇒ ∠Γ = π,

the condition reduces to

kxa = (n + 1)π = mπ, m = 1, 2, 3, · · ·

for TEm modes, which is the same condition we obtained by using
uniqueness arguments in connection with the standing-wave field
solution earlier on.

We will utilize the relation

kxa− ∠Γ = nπ, n = 0, 1, 2, · · · ,

with the constraint that −π < ∠Γ ≤ π later on when we will study dielectric-
slab waveguides — in that case we will have a TIR (θ1 > θc) related reflection
coefficient Γ with a θ1 dependent phase angle ∠Γ.
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• There is an even easier way of obtaining the same guidance condition
using the following steps: The guided TEm modes propagating in z

direction are superpositions of incident and reflected TEM plane waves
⇐ Pay close attention to this
method.

Next lecture we will use it to

derive TM modes.

Ẽi = ŷEoe
−j(−kxx+kzz)

and
Ẽr = ŷEoΓe

−j(kxx+kzz)

where Γ = Γ⊥ = −1 is the TE-mode reflection coefficient appropriate
for an air-PEC interface. Since for the permissible guided modes, TEM
wave Ẽr gets reflected (once more) at x = a to become Ẽi at the same
location, it is necessary that

(ŷEoΓe
−j(kxa+kzz))Γ = ŷEoe

−j(−kxa+kzz)e−j2πn

for any integer n, i.e.,

|Γ|2ej2∠Γe−jkxa = ejkxae−j2πn.

This is possible if and only if |Γ| = 1 and

2∠Γ− kxa = kxa− 2πn ⇒ kxa = ∠Γ + nπ = mπ,

the same guidance condition that we obtained earlier on.
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Example 1: TEm mode fields have transverse electric field phasors

Ẽ = 2jŷEoe
−jkzzsin(kxx)

satisfying the zero-tangential field conditions at x = 0 and x = a planes with

kx =
mπ

a
and kz =

ω

c

√

1−
f 2
c

f 2

where
fc =

mc

2a
.

(a) Determine the magnetic field intensity phasor H̃ for TEm mode waves. (b)
Also determine ηTE ≡ Ey

−Hx

, which is the effective guide impedance for TEm mode.

Solution: (a) Using Faraday’s law, we have

H̃ =
∇× Ẽ

−jωµo
=

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 Ey 0

∣

∣

∣

∣

∣

∣

−jωµo
=

−x̂
∂Ey

∂z + ẑ
∂Ey

∂x

−jωµo

= −
2Eo

ωµo
(x̂(jkz sin(kxx) + ẑkx cos(kxx))e

−jkzz.

(b) Using the result of part (a), we have

ηTE =
Ey

−Hx
=

2jEoe
−jkzzsin(kxx)

2Eo

ωµo

jkz sin(kxx)e−jkzz

=
1

1

ωµo

kz
=

ωµo

ω
c

√

1− f2
c

f2

=
ηo

√

1− f2
c

f2

.
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