26 Parallel-plate waveguides — TM_m modes

- Last lecture we discussed the TE_m modes of propagation in parallelplate waveguides.
- These guided modes have y-polarized electric fields transverse to the propagation direction z and exhibit a standing wave pattern in x-direction with m half-wavelengths of variation between the guide plates at x = 0 and x = a.
 - More specifically, the TE_m modes have transverse electric field phasors

$$\tilde{\mathbf{E}} = 2j\hat{y}E_oe^{-jk_zz}\sin(k_xx)$$

where

$$k_x = \frac{m\pi}{a}, \ m = 1, 2, \cdots$$

and

$$k_z = \sqrt{k^2 - k_x^2} = \frac{\omega}{c} \sqrt{1 - \frac{f_c^2}{f^2}}$$

with **cutoff frequencies**

$$f_c = \frac{mc}{2a}.$$

Alternatively (and equivalently),

$$k_z = \sqrt{k^2 - k_x^2} = \frac{\omega}{c} \sqrt{1 - \frac{\lambda^2}{\lambda_c^2}},$$

1

with ${\bf cutoff\ wavelengths}$

$$\lambda_c = \frac{2a}{m}$$

Above, the operation frequency f and operation wavelength $\lambda \text{satisfy}$ $\lambda f=c,$ and furthermore

$$k = \frac{2\pi}{\lambda} = \frac{\omega}{c}$$

is the operation wavenumber. The propagation characteristics of the guided mode, on the other hand, depends on k_z , with

$$v_p = \frac{\omega}{k_z}$$
 and $\lambda_g = \frac{2\pi}{k_z}$

denoting the phase velocity and the wavelength of the guided mode when

 $f > f_c$ and, equivalently, $\lambda < \lambda_c$,

corresponding to propagation condition for a given mode. When

$$f < f_c$$
 and, equivalently, $\lambda > \lambda_c$,

the mode is evanescent.

– Since

$$k_z = \sqrt{k^2 - k_x^2} = \frac{\omega}{c} \sqrt{1 - \frac{f_c^2}{f^2}}$$

is effectively the dispersion relation of the guided modes having the same form as the plasma dispersion relation, it follows that the group velocity is

$$v_g = \frac{\partial \omega}{\partial k_z} = c \sqrt{1 - \frac{f_c^2}{f^2}}$$
 and $v_g v_p = c^2$

just like in plasmas.

- Finally TE_m mode fields have a guide impedance

$$\eta_{TE} = -\frac{E_y}{H_x} = \frac{\eta_o}{\sqrt{1 - \frac{f_c^2}{f^2}}}$$

relating the transverse field components of the wave.

• Next we turn our attention on TM_m mode fields which share most of the dispersion characteristics of the TE_m mode fields. However, they are essentially orthogonal to TE_m mode fields and furthermore support the m = 0 case which is absent for TE_m modes.

4

• TM_m mode guided waves propagating in z direction correspond to superpositions of incident and reflected TEM plane waves with

$$\tilde{\mathbf{H}}_i = \hat{y} H_o e^{-j(-k_x x + k_z z)}$$

and

$$\tilde{\mathbf{H}}_r = \hat{y} H_o \Gamma e^{-j(k_x x + k_z z)}$$

where $\Gamma = R = 1$ is the TM-mode reflection coefficient at an air-PEC interface.

For permissible TM_m modes $\tilde{\mathbf{H}}_r$ gets reflected (once more) $at \ x = a$ to become $\tilde{\mathbf{H}}_i$ at the same location, and thus it is necessary that

$$(\hat{y}H_o\Gamma e^{-j(k_xa+k_zz)})\Gamma = \hat{y}H_oe^{-j(-k_xa+k_zz)}e^{-j2\pi m}$$

for any integer m, i.e.,

$$|\Gamma|^2 e^{j2\angle\Gamma} e^{-jk_x a} = e^{jk_x a} e^{-j2\pi m}$$

This is possible, since $|\Gamma| = |R| = 1$ and $\angle \Gamma = \angle R = 0$, with

$$-k_x a = k_x a - 2\pi m \Rightarrow k_x a = m\pi$$

leading to

$$k_x = \frac{m\pi}{a}, \ m = 0, 1, 2, \cdots$$

as the guiding condition for TM_m modes.

• Since for TM_m modes the transverse field

$$\tilde{\mathbf{H}} = \tilde{\mathbf{H}}_i + \tilde{\mathbf{H}}_r = 2\hat{y}H_o e^{-jk_z z} \cos(k_x x)$$

does not vanish with vanishing k_x , the m = 0 mode is permitted. In fact, TM₀ mode corresponding to m = 0 is the TEM mode studied in EEC 329 in transmission line (TL) theory.

 $- TM_0 = TEM$ consists of wave fields

$$\tilde{\mathbf{E}} = \hat{x} E_o e^{-jkz}$$
 and $\tilde{\mathbf{H}} = \hat{y} \frac{E_o}{\eta_o} e^{-jkz}$

which naturally satisfy the boundary conditions at x = 0 and x = a planes of having zero tangential electric field.

– Also, for this mode

$$k_x = 0$$
 and $k_z = k$,

which follows when m = 0 is permitted in dispersion equations when applied for the case of TM_m modes. **Example 1:** TM_m mode fields have transverse magnetic intensity phasors

$$\tilde{\mathbf{H}} = 2\hat{y}H_o e^{-jk_z z}\cos(k_x x).$$

(a) Determine the electric field phasor $\tilde{\mathbf{E}}$ for TM_m mode waves. (b) Also determine $\eta_{TM} \equiv \frac{E_x}{H_u}$, the effective guide impedance for TM_m mode.

Solution: (a) Using Ampere's law, we have

$$\tilde{\mathbf{E}} = \frac{\nabla \times \tilde{\mathbf{H}}}{j\omega\epsilon_o} = \frac{\begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & H_y & 0 \end{vmatrix}}{j\omega\epsilon_o} = \frac{-\hat{x}\frac{\partial H_y}{\partial z} + \hat{z}\frac{\partial H_y}{\partial x}}{j\omega\epsilon_o}$$
$$= \frac{2H_o}{j\omega\epsilon_o}(\hat{x}(jk_z\cos(k_xx) - \hat{z}k_x\sin(k_xx))e^{-jk_zz}.$$

(b) Using the result of part (a), we have

$$\eta_{TM} = \frac{E_x}{H_y} = \frac{\frac{2H_o}{j\omega\epsilon_o}jk_z\cos(k_xx)e^{-jk_zz}}{2H_oe^{-jk_zz}\cos(k_xx)}$$
$$= \frac{k_z}{\omega\epsilon_o} = \frac{\frac{\omega}{c}\sqrt{1-\frac{f_c^2}{f^2}}}{\omega\epsilon_o} = \eta_o\sqrt{1-\frac{f_c^2}{f^2}}.$$

- Note that the results obtained in Example 1 give non-trivial results for m = 0 case with $k_x = 0$ and $k_z = k$.
- $TM_0=TEM$ mode has no cutoff frequency and it is non-dispersive. It

has all the properties of the unguided TEM waves we are familiar with.

• Finally, regarding dispersive TE_m and TM_m modes with $m \ge 1$, all the equations derived above can also be used when the guiding plates are embedded in dielectric media (instead of air) by simply replacing

$$c = \frac{1}{\sqrt{\mu_o \epsilon_o}}$$
 with $v_p = \frac{1}{\sqrt{\mu \epsilon_o}}$

in the dispersion equations.

- There is a straightforward geometrical interpretation of v_g obtained for guided TE and TM modes.
 - Clearly the component TEM waves which constitute the guided modes (TE and TM) propagate at angles $\pm \theta$ with a velocity cin air-filled waveguides. The projection along z of the velocity vectors pointing in $\pm \theta$ directions are

$$c\sin\theta = c\sqrt{1-\cos^2\theta} = c\sqrt{1-\frac{k_x^2}{k^2}} = c\sqrt{1-\frac{f_c^2}{f^2}},$$

which is of course the group velocity of the guided modes as we have seen before.

This makes sense: in the component TEM waves — which are nondispersive — of the guided modes, the phase fronts as well as any imposed modulations move with the same velocity, namely c. - While the progress of modulation on the component waves along $\pm \theta$ occurs at a velocity c, the modulation covers a shorter distance along z than the corresponding slant distance along $\pm \theta$, and thus v_g measuring the progress of the modulation along z is smaller than c measuring the same progress along $\pm \theta$.