27 Parallel-plate waveguides: example problems

Summarizing the properties of guided modes of propagation in parallel-plate waveguides:

- TE_{m} and TE_{m} modes with the transverse field phasors

$$
\tilde{\mathbf{E}}=2 j \hat{y} E_{o} e^{-j k_{z} z} \sin \left(k_{x} x\right) \text { and } \tilde{\mathbf{H}}=2 \hat{y} H_{o} e^{-j k_{z} z} \cos \left(k_{x} x\right),
$$

respectively, where

$$
k_{x}=\frac{m \pi}{a} \text { and } k_{z}=\sqrt{k^{2}-k_{x}^{2}}=\frac{\omega}{c} \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}=\frac{\omega}{c} \sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}} \text {, }
$$

with cutoff frequencies and wavelengths

$$
f_{c}=\frac{m c}{2 a} \text { and } \lambda_{c}=\frac{2 a}{m},
$$

respectively, satisfy the zero tangential $\tilde{\mathbf{E}}$ boundary conditions on $x=0$ and $x=a$ plates of the guide.
$-\mathrm{TE}_{0}$ mode does not exist but $\mathrm{TM}_{0}=\mathrm{TEM}$ does and it is dispersionless.

- All TE_{m} and TM_{m} modes are dispersive for $m \geq 1$, and propagate only if $f>f_{c}$, or, equivalently, $\lambda<\lambda_{c}$.
- Non-propagating modes are evanescent and have an attenuation constant $\left|k_{z}\right|$.
- Also TE_{m} and TE_{m} mode fields have guide impedances

$$
\eta_{T E}=\frac{E_{y}}{-H_{x}}=\frac{\eta_{o}}{\sqrt{1-\frac{f_{c}^{2}}{f^{2}}}} \text { and } \eta_{T M}=\frac{E_{x}}{H_{y}}=\eta_{o} \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}
$$

relating the transverse field components of the guided modes.
All the results summarized above are for air-filled waveguides, but they can be readily modified, by replacing c and η_{o} with c / n and η, respectively, in the case of dielectric-filled waveguides.

Example 1: Consider a dielectric-filled parallel-plate waveguide with $a=2 \mathrm{~cm}$. The permeability of the dielectric filling is μ_{o} and its refractive index is $n=1.5$.

1. Which TE_{m} and TM_{m} modes can propagate a 12 GHz signal in the waveguide?
2. What would be the associated cutoff wavelengths in each case?
3. What would be the associated group velocities in each case? - here assume a modulated 12 GHz carrier with a narrow modulation bandwidth.

Solution: Unguided propagation velocity for the dielectric filling the waveguide is

$$
v=\frac{c}{n}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.5}=2 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Using v in place of c in the cutoff frequency formula for TE_{m} and TM_{m} modes we find

$$
f_{c}=\frac{m v}{2 a}=\frac{m \times 2 \times 10^{10} \mathrm{~cm} / \mathrm{s}}{2 \times 2 \mathrm{~cm}}=m 5 \times 10^{9} \mathrm{~Hz}=5 m \mathrm{GHz} .
$$

1. $f=12 \mathrm{GHz}$ exceeds the cutoff frequencies of TE_{m} and TM_{m} for $m=1$ and 2 , but not 3. Therefore, the propagating (i.e., non-evanescent) modes at $f=12$ GHz are $\mathrm{TM}_{0}, \mathrm{TE}_{1}, \mathrm{TM}_{1}, \mathrm{TE}_{2}$, and TM_{2}.
2. Cuttof-wavelength are given by the equation

$$
\lambda_{c}=\frac{2 a}{m}
$$

and do not depend on the dielectric filling. They are, with $a=2 \mathrm{~cm}$,

$$
\lambda_{c}=4 \mathrm{~cm} \text { for } \mathrm{TE}_{1}=\mathrm{TM}_{1} \text { and } \lambda_{c}=2 \mathrm{~cm} \text { for } \mathrm{TE}_{2}=\mathrm{TM}_{2} .
$$

The cutoff wavelength is ∞ for TEM mode (which does not have a cutoff condition).
3. Group velocities are given by the equation

$$
v_{g}=v \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}
$$

where $v=c / n$. For the non-dispersive TEM mode with $f_{c}=0$ the group velocity is $v_{g}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. For TE_{1} and TM_{1} modes

$$
v_{g}=v \sqrt{1-\frac{5^{2}}{12^{2}}}=1.82 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

For TE_{2} and TM_{2} modes

$$
v_{g}=v \sqrt{1-\frac{10^{2}}{12^{2}}}=1.11 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

Example 2: Consider an air-filled parallel-plate waveguide with $a=3 \mathrm{~cm}$. Calculate the guide wavelength λ_{g} or the attenuation rate in $\mathrm{dB} / \mathrm{cm}$ of the TE_{1} mode in the guide - whichever appropriate - if the operating wavelength of the mode is (a) $\lambda=3 \mathrm{~cm}$, and (b) $\lambda=12 \mathrm{~cm}$.

Solution: The cutoff wavelength of TE_{1} mode in the guide is

$$
\lambda_{c}=\frac{2 a}{m}=\frac{2 \times 3 \mathrm{~cm}}{1}=6 \mathrm{~cm} .
$$

(a) For $\lambda=3 \mathrm{~cm}, \lambda<\lambda_{c}$, and, therefore, the TE_{1} mode is propagating. The propagation constant, that is k_{z}, is

$$
k_{z}=k \sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}}=\frac{2 \pi}{\lambda} \sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}}
$$

and the guide wavelength is

$$
\lambda_{g}=\frac{2 \pi}{k_{z}}=\frac{\lambda}{\sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}}}=\frac{3 \mathrm{~cm}}{\sqrt{1-\frac{3^{2}}{6^{2}}}}=\frac{3 \mathrm{~cm}}{\sqrt{1-\frac{1}{4}}}=\frac{3 \mathrm{~cm}}{\sqrt{\frac{3}{4}}}=2 \sqrt{3} \mathrm{~cm} .
$$

(b) For $\lambda=12 \mathrm{~cm}, \lambda>\lambda_{c}$, and, therefore, the TE_{1} mode is evanescent. The attenuation constant is $\left|k_{z}\right|$, where

$$
k_{z}=k \sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}}=\frac{2 \pi}{\lambda} \sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}}=\frac{2 \pi}{12} \sqrt{1-\frac{12^{2}}{6^{2}}}=\frac{\pi}{6} \sqrt{-3}= \pm j \frac{\pi}{2 \sqrt{3}} \mathrm{rad} / \mathrm{cm} .
$$

Therefore, the attenuation rate is

$$
20 \log _{10} e^{\left|k_{z}\right|}=\left|k_{z}\right| 20 \log _{10} e=\frac{\pi}{2 \sqrt{3}} \times 8.686 \approx 7.88 \mathrm{~dB} / \mathrm{cm}
$$

Example 3: A parallel-plate waveguide with $a=3 \mathrm{~cm}$ is air filled for $z<0$ but it is filled with a dielectric for $z>0$ which has $\mu=\mu_{o}$ and a refractive index $n=1.5$. If a TE_{1} mode wave field with $\lambda=3 \mathrm{~cm}$ is incident from the air-filled region on the interface at $z=0$, what fraction of the time-averaged incident power will be transmitted into the $z>0$ region of the guide?

Solution: The cutoff wavelength of TE_{1} mode in the guide is

$$
\lambda_{c}=\frac{2 a}{m}=\frac{2 \times 3 \mathrm{~cm}}{1}=6 \mathrm{~cm} .
$$

For $\lambda=3 \mathrm{~cm}$, the intrinsic impedance of the TE_{1} mode fields is therefore

$$
\eta_{T E 1}=\frac{\eta_{o}}{\sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}}}=\frac{120 \pi}{\sqrt{1-\frac{3^{2}}{6^{2}}}}=\frac{120 \pi}{\sqrt{\frac{3}{4}}}=\frac{240 \pi}{\sqrt{3}} \Omega
$$

in the air filled section.
Within the dielectric region the operation wavelength is $\lambda_{2}=\lambda / n=3 / 1.5=2 \mathrm{~cm}$, and, therefore the intrinsic impedance is

$$
\eta_{T E 2}=\frac{\eta_{o} / n}{\sqrt{1-\frac{\lambda_{2}^{2}}{\lambda_{c}^{2}}}}=\frac{120 \pi / 1.5}{\sqrt{1-\frac{2^{2}}{6^{2}}}}=\frac{80 \pi}{\sqrt{\frac{8}{9}}}=\frac{240 \pi}{\sqrt{8}} \Omega .
$$

Thus, using a transmission line analogy, the reflection coefficient at the interface is

$$
\Gamma=\frac{\eta_{T E 2}-\eta_{T E 1}}{\eta_{T E 2}+\eta_{T E 1}}=\frac{\frac{1}{\sqrt{8}}-\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{8}}+\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-\sqrt{8}}{\sqrt{3}+\sqrt{8}}=-0.24
$$

which is the transverse electric field amplitude of the reflected wave in the air filled region divided by the incident electric field amplitude.

Consequently, the fraction of the incident time-averaged power reflected back from the interface is the reflectance

$$
|\Gamma|^{2} \approx 0.058
$$

and

$$
1-|\Gamma|^{2} \approx 0.942
$$

represents the transmittance, the fraction of the incident time-averaged power transmitted into the dielectric filled region.

