
28 TMmn modes in rectangular waveguides

When the operation frequency f in a parallel-plate waveguide exceeds the
cutoff frequency fc =

c
2a of the TE1 mode, dual- or multi-mode operations

become unavoidable in the guide.
Single-mode operation at high frequencies can be attained by turning off

the guided TEM(=TM0) mode by introducing a pair of new plates on, say,
y = 0 and y = b planes as shown in the margin. This configuration is
known as the “rectangular waveguide”, which is the subject of the next set of
lectures.
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• Briefly, the guided TEM mode is suppressed in the rectangular waveg-
uide, and propagation is only possible in terms of TMmn and TEmn

modes. By definition:

1. Hz = 0 for TMmn mode, for which the mode properties can be
derived from a non-zero Ez(x, y, z) = f(x, y)e−jkzz;

2. Ez = 0 for TEmn mode, for which the mode properties can be
derived from a non-zero Hz(x, y, z) = f(x, y)e−jkzz;

where the constraints on f(x, y) and kz are to be determined from
Maxwell’s equations and the relevant boundary conditions.
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• Both TMmn and TEmn modes consist of the superposition of free-
propagating TEM wave fields reflecting from the guide walls and satis-
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fying the well-known vector wave equations

∇2
Ẽ + ω2µoεoẼ = 0 and ∇2

H̃ + ω2µoεoH̃ = 0

derived from (see margin) Maxwell’s equations. Vector wave equation in pha-
sor form: Taking the curl of
Faraday’s law

∇× Ẽ = −jωµoH̃,

and using

∇×∇× Ẽ = ∇(∇ · Ẽ)−∇2
Ẽ,

∇ · Ẽ = 0,

∇× H̃ = jωεoẼ,

it follows that

∇2
Ẽ+ ω2µoεoẼ = 0.

Likewise,

∇2
H̃+ ω2µoεoH̃ = 0.

TMmn modes:

• To examine the TMmn mode with

Hz = 0 and Ez(x, y, z) = f(x, y)e−jkzz

consider the z-component of the wave-equation for the electric field,
namely

∇2Ez + k2Ez = 0,

where

k2 ≡ ω2µoεo and ∇2 ≡
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Substituting Ez into the wave-equation component we have

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)f(x, y)e−jkzz + k2f(x, y)e−jkzz = 0,

from which

(
∂2

∂x2
+

∂2

∂y2
)f(x, y)e−jkzz + (−jkz)

2f(x, y)e−jkzz + k2f(x, y)e−jkzz = 0

or

(
∂2

∂x2
+

∂2

∂y2
)f(x, y) + (k2 − k2z)f(x, y) = 0.
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• We will next solve this 2D pdf using the method of separation of

variables. In this method we assume that

f(x, y) = X(x)Y (y),

that is, we assume1 that 2D function f(x, y) of variables x and y is a
product of 1D functions X(x) and Y (y) of x and y, respectively. With

(
∂2

∂x2
+

∂2

∂y2
)f+(k2−k2z)f = 0

2.29 cm by 1.012 cm

Stantard X-band (8.2-
12.4 GHz) waveguide in
which only TE10 mode
is non-evanescent within
X-band.

this assumption, the pdf above takes the form

Y X ′′ +XY ′′ + (k2 − k2z)XY = 0 ⇒
X ′′

X
+

Y ′′

Y
+ (k2 − k2z) = 0

where

X ′′ ≡
∂2X

∂x2
and Y ′′ ≡

∂2Y

∂y2

– Since (k2 − k2z) is independent x and y, it follows from the above
pdf that X ′′/X as well as Y ′′/Y are constants independent of
spatial coordinates. Thus we can write

X ′′

X
= −k2x ⇒

∂2X

∂x2
+ k2xX = 0

where kx is some constant. Also, by the same argument,

Y ′′

Y
= −k2y ⇒

∂2Y

∂y2
+ k2yY = 0,

1This may appear to be a restricting assumption. However, if the procedure produces an infinite family
of solutions (modes) which span the space of permissible solutions — i.e., a complete set in mathemat-
ical terms — then the procedure is not a restricting one in connection with linear pdf’s that allow the
superposition of permissible solutions.
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where ky is some other constant. Furthermore, utilizing both of
these conditions within

∂2X

∂x2
+ k2xX = 0

∂2Y

∂y2
+ k2yY = 0,

X ′′

X
+

Y ′′

Y
+ (k2 − k2z) = 0

we get

−k2x − k2y + (k2 − k2z) = 0 ⇒ kz =
√

k2 − k2x − k2y.

- We continue by noting that the 2nd order ODEs for X(x) and
Y (y) above are solved by

X(x) = A cos kxx+B sin kxx and Y (y) = C cos kyy+D sin kyy.

These general solutions with constants A, B, C, D simplify when
we apply the boundary conditions that X(x)Y (y) = 0 at x = 0
and y = 0 as follows:

◦ X(0) = 0 implies A = 0, and in turn X(x) = B sin kxx;

◦ Y (0) = 0 implies C = 0, and in turn Y (y) = D sin kyy;

Furthermore,

◦ X(a) = 0 implies kxa = mπ, m = 1, 2, 3, · · ·

◦ Y (b) = 0 implies kyb = nπ, n = 1, 2, 3, · · ·

– Combining the above results, we get

f(x, y) = X(x)Y (y) = Eo sin(kxx) sin(kyy)
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and consequently

Ez(x, y, z) = Eo sin(kxx) sin(kyy)e
−jkzz,

with

kx =
mπ

a
, ky =

nπ

b
, kz =

ω

c

√

1−
k2x + k2y

k2
=

ω

c

√

1−
f 2
c

f 2
,

where

fc =

√

(
mc

2a
)2 + (

nc

2b
)2

is the pertinent cutoff frequency of the TMmn mode with m,n ≥ 0.

– Note that neither m = 0 nor n = 0 are permitted with non-zero
Ez. Thus TMm0 and TM0n modes don’t exist! Cutoff wavelength: As usual

we have
λc

λ
=

f

fc

and hence

λc =
λf

√

(mc

2a
)2 + (nc

2b
)2

=
1

√

(m
2a
)2 + ( n

2b
)2
.

Transverse field components:

Above, we have obtained the dispersion relation for TMmn mode in rectangu-
lar waveguides. The dispersion characteristics of these modes are identical to
those we have discussed in connection with parallel-plate waveguides except
for the generalized expression for fc.

• Given Ez(x, y, z) determined above as well as the fact that Hz = 0 (by
assumption), transverse field components of TMmn mode waves can be
inferred from Faraday’s and Ampere’s laws as shown next:
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– With field components varying with z according to e−jkzz, Fara-
day’s law implies

∇× Ẽ =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y −jkz

Ex Ey Ez

∣

∣

∣

∣

∣

∣

∣

= −jωµo(Hx,Hy,Hz),

from which

Hx =
∂Ez

∂y + jkzEy

−jωµo
, Hy =

∂Ez

∂x + jkzEx

jωµo
, Hz =

∂Ey

∂x − ∂Ex

∂y

−jωµo
.

– Likewise, Ampere’s law implies

∇× H̃ =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y −jkz

Hx Hy Hz

∣

∣

∣

∣

∣

∣

∣

= jωεo(Ex,Ey, Ez),

from which

Ex =
∂Hz

∂y + jkzHy

jωεo
, Ey =

∂Hz

∂x + jkzHx

−jωεo
, Ez =

∂Hy

∂x − ∂Hx

∂y

jωεo
.

• Now (as confirmed in HW),

Hx =
∂Ez

∂y + jkzEy

−jωµo
and Ey =

∂Hz

∂x + jkzHx

−jωεo
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from above imply that

Hx = −
jkz

∂Hz

∂x − jωεo
∂Ez

∂y

k2 − k2z
and Ey = −

jkz
∂Ez

∂y − jωµo
∂Hz

∂x

k2 − k2z

and, likewise, TM mode fields:

Hx =
jωεo

∂Ez

∂y

k2 − k2z
,

Hy =
−jωεo

∂Ez

∂x

k2 − k2z
,

Ex =
−jkz

∂Ez

∂x

k2 − k2z
,

Ey =
−jkz

∂Ez

∂y

k2 − k2z
.

Hy =
∂Ez

∂x + jkzEx

jωµo
and Ex =

∂Hz

∂y + jkzHy

jωεo

imply that

Hy = −
jkz

∂Hz

∂y + jωεo
∂Ez

∂x

k2 − k2z
and Ex = −

jkz
∂Ez

∂x + jωµo
∂Hz

∂y

k2 − k2z
.

• The expressions above provide the transverse field components in terms
of transverse derivatives of longitudinal components Ez and Hz.

TE mode fields:

Ex =
−jωµo

∂Hz

∂y

k2 − k2z
,

Ey =
jωµo

∂Hz

∂x

k2 − k2z
,

Hx =
−jkz

∂Hz

∂x

k2 − k2z
,

Hy =
−jkz

∂Hz

∂y

k2 − k2z
.

– By setting Hz = 0, they yield the transverse field components for
TMmn modes shown in the margin.

Also,

– By setting Ez = 0, they yield the transverse field components for
TEmn modes also shown in the margin.

7


