28 TM,,,,, modes in rectangular waveguides

When the operation frequency f in a parallel-plate waveguide exceeds the
cutoff frequency f. = o of the TE; mode, dual- or multi-mode operations
become unavoidable in the guide.

Single-mode operation at high frequencies can be attained by turning off
the guided TEM(=TMj) mode by introducing a pair of new plates on, say,
y = 0 and y = b planes as shown in the margin. This configuration is
known as the “rectangular waveguide”, which is the subject of the next set of
lectures.

e Briefly, the guided TEM mode is suppressed in the rectangular waveg-
uide, and propagation is only possible in terms of TM,,,, and TE,,,
modes. By definition:

1. H. = 0 for TM,,,, mode, for which the mode properties can be
derived from a non-zero E.(z,y,2) = f(z, y)e—ﬂw;

2. . = 0 for TE,,,, mode, for which the mode properties can be

derived from a non-zero H.(z,y,z) = f(z,y)e /%

where the constraints on f(x,y) and k, are to be determined from

Maxwell’s equations and the relevant boundary conditions.

e Both TM,,, and TE,,, modes consist of the superposition of free-
propagating TEM wave fields reflecting from the guide walls and satis-
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fying the well-known vector wave equations
V’E + w2,u060E =0 and V?H + wQ,uOEOI:I =0

derived from (see margin) Maxwell’s equations.

TM,,,,, modes:

e To examine the TM,,,, mode with
H.=0 and E.(z,y,2)= f(z,y)e /"

consider the z-component of the wave-equation for the electric field,
namely

V2E. + k°E, =0,

where
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Substituting E, into the wave-equation component we have

k? = w2,u060 and V? =

0 9?0 . , .
<6l‘2 ™ 6y2 + 8Z2>f<x7y>€_j “+k f(x,y)e_J =0,
from which
2 2 . ) . ) "
(a2 + g/ (@ )e ™+ (=ke) S, y)e 7 + Ko f(z,y)e ™ =0
or
62 82 2 2
(5a7 * g2 @) + (6 = ) f () = 0.

Vector wave equation in pha-
sor form: Taking the curl of
Faraday’s law

V x E = —jwuH,
and using

VxVxE = V(V-E)-V’E,
V-E = 0,
VxH = jwekE,

it follows that
V2E + wz,uoeoﬁl =0.
Likewise,

V2H + wQ,uonfI =0.



e We will next solve this 2D pdf using the method of separation of
variables. In this method we assume that

flz,y) = X(2)Y (y),

that is, we assume! that 2D function f(x,y) of variables z and y is a
product of 1D functions X (x) and Y (y) of x and y, respectively. With
this assumption, the pdf above takes the form

i Y//

VX" + XY+ (B - )XY =0 = 7+7+(k2—k§) =
where 2y 2y
X" = P and Y/ = 0—y2

— Since (k* — k?) is independent z and y, it follows from the above
pdf that X”/X as well as Y”/Y are constants independent of
spatial coordinates. Thus we can write

X" 0?X
=k = KX =0
X v Ox? T
where k, is some constant. Also, by the same argument,
Y” 5 o’y 2.29 cm by 1.012 cm
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where k, is some other constant. Furthermore, utilizing both of
these conditions within

X// Y// azX
et 4+ (K —-EH)=0 2X =
X+Y+( 2) e + kX =0
we get
%Y
+ kY =0,
R4 (- =0 = k= Rk 2, B

- We continue by noting that the 2nd order ODEs for X (x) and
Y (y) above are solved by

X(z) = Acoskyx+ Bsink,z and Y(y) = Ccosk,y+ Dsink,y.

These general solutions with constants A, B, C, D simplify when
we apply the boundary conditions that X(z)Y(y) = 0at z =0
and y = 0 as follows:

o X(0) =0 implies A =0, and in turn X (x) = Bsin k,x;

o Y(0) =0 implies C' =0, and in turn Y (y) = D sin k,y;

Furthermore,
o X(a)= 0 implies kya =mm, m=1,2,3,---
o Y(b) =0 implies kb =nm, n=1,2,3,---
— Combining the above results, we get
flx,y) = X(2)Y (y) = E,sin(k,x) sin(k,y)
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and consequently

E.(z,y,2) = E,sin(k,x) sin(kyy)e /"2,

with
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where

fc — \/(%)2 + (%)2

is the pertinent cutoff frequency of the TM,,,,, mode with m,n > 0.

— Note that neither m = 0 nor n = 0 are permitted with non-zero
E.. Thus TM,,o and TM,, modes don’t exist!

Transverse field components:

Above, we have obtained the dispersion relation for TM,,,, mode in rectangu-
lar waveguides. The dispersion characteristics of these modes are identical to
those we have discussed in connection with parallel-plate waveguides except
for the generalized expression for f..

e Given F.(z,y, z) determined above as well as the fact that H, = 0 (by
assumption), transverse field components of TM,,,, mode waves can be
inferred from Faraday’s and Ampere’s laws as shown next:

Cutoff wavelength: As usual
we have
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— With field components varying with z according to e 7*:*  Fara-
day’s law implies

V X E = g 8%/ _]kz :_jwMO(HxanHz))

E, B, FE,
from which
H, = % +JkZEy> Hy — _‘_JkZExa HZ — u
— JWko JWho —JWito

Ty Oz

VxH=| & & —jk |=jwelE,, Ey E.),
H, H, H,

from which
EJJ — ay —I—]kZHy) Ey — e _‘_']kZHl" Ez - u
Jwe, —JWe, Jwe,
e Now (as confirmed in HW),
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from above imply that
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and, likewise, TM mode fields:
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e The expressions above provide the transverse field components in terms E, = kQ—ZyQ'
A

of transverse derivatives of longitudinal components E, and H..

— By setting H. = 0, they yield the transverse field components for TE mode fields:

TM,,,, modes shown in the margin. —jwﬂoaaHyZ
E, = EREa
Also, :

PO s

— By setting E, = 0, they yield the transverse field components for ! k? — k27
TE,,, modes also shown in the margin. — jkzagfcz

Hy = k2 — k27
H _jkza@Hyz
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