$28 \mathrm{TM}_{m n}$ modes in rectangular waveguides

When the operation frequency f in a parallel-plate waveguide exceeds the cutoff frequency $f_{c}=\frac{c}{2 a}$ of the TE_{1} mode, dual- or multi-mode operations become unavoidable in the guide.

Single-mode operation at high frequencies can be attained by turning off the guided $\mathrm{TEM}\left(=\mathrm{TM}_{0}\right)$ mode by introducing a pair of new plates on, say, $y=0$ and $y=b$ planes as shown in the margin. This configuration is known as the "rectangular waveguide", which is the subject of the next set of lectures.

- Briefly, the guided TEM mode is suppressed in the rectangular waveguide, and propagation is only possible in terms of $\mathrm{TM}_{m n}$ and $\mathrm{TE}_{m n}$ modes. By definition:

1. $H_{z}=0$ for $\mathrm{TM}_{m n}$ mode, for which the mode properties can be derived from a non-zero $E_{z}(x, y, z)=f(x, y) e^{-j k_{z} z}$;
2. $E_{z}=0$ for $\mathrm{TE}_{m n}$ mode, for which the mode properties can be derived from a non-zero $H_{z}(x, y, z)=f(x, y) e^{-j k_{z} z}$;
where the constraints on $f(x, y)$ and k_{z} are to be determined from Maxwell's equations and the relevant boundary conditions.

- Both $\mathrm{TM}_{m n}$ and $\mathrm{TE}_{m n}$ modes consist of the superposition of freepropagating TEM wave fields reflecting from the guide walls and satis-
fying the well-known vector wave equations

$$
\nabla^{2} \tilde{\mathbf{E}}+\omega^{2} \mu_{o} \epsilon_{o} \tilde{\mathbf{E}}=0 \text { and } \nabla^{2} \tilde{\mathbf{H}}+\omega^{2} \mu_{o} \epsilon_{o} \tilde{\mathbf{H}}=0
$$

derived from (see margin) Maxwell's equations.

$\mathbf{T M}_{m n}$ modes:

- To examine the $\mathrm{TM}_{m n}$ mode with

$$
H_{z}=0 \text { and } E_{z}(x, y, z)=f(x, y) e^{-j k_{z} z}
$$

consider the z-component of the wave-equation for the electric field,

Vector wave equation in phasor form: Taking the curl of Faraday's law

$$
\nabla \times \tilde{\mathbf{E}}=-j \omega \mu_{o} \tilde{\mathbf{H}}
$$

and using
$\nabla \times \nabla \times \tilde{\mathbf{E}}=\nabla(\nabla \cdot \tilde{\mathbf{E}})-\nabla^{2} \tilde{\mathbf{E}}$,

$$
\nabla \cdot \tilde{\mathbf{E}}=0
$$

$$
\nabla \times \tilde{\mathbf{H}}=j \omega \epsilon_{o} \tilde{\mathbf{E}}
$$

it follows that

$$
\nabla^{2} \tilde{\mathbf{E}}+\omega^{2} \mu_{o} \epsilon_{o} \tilde{\mathbf{E}}=0
$$

Likewise,

$$
\nabla^{2} \tilde{\mathbf{H}}+\omega^{2} \mu_{o} \epsilon_{o} \tilde{\mathbf{H}}=0
$$

Substituting E_{z} into the wave-equation component we have

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) f(x, y) e^{-j k_{z} z}+k^{2} f(x, y) e^{-j k_{z} z}=0
$$

from which

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f(x, y) e^{-j k_{z} z}+\left(-j k_{z}\right)^{2} f(x, y) e^{-j k_{z} z}+k^{2} f(x, y) e^{-j k_{z} z}=0
$$

or

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f(x, y)+\left(k^{2}-k_{z}^{2}\right) f(x, y)=0 .
$$

- We will next solve this 2D pdf using the method of separation of variables. In this method we assume that

$$
f(x, y)=X(x) Y(y),
$$

that is, we assume ${ }^{1}$ that 2 D function $f(x, y)$ of variables x and y is a product of 1D functions $X(x)$ and $Y(y)$ of x and y, respectively. With this assumption, the pdf above takes the form

$$
Y X^{\prime \prime}+X Y^{\prime \prime}+\left(k^{2}-k_{z}^{2}\right) X Y=0 \Rightarrow \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\left(k^{2}-k_{z}^{2}\right)=0
$$

where

$$
X^{\prime \prime} \equiv \frac{\partial^{2} X}{\partial x^{2}} \text { and } Y^{\prime \prime} \equiv \frac{\partial^{2} Y}{\partial y^{2}}
$$

- Since $\left(k^{2}-k_{z}^{2}\right)$ is independent x and y, it follows from the above pdf that $X^{\prime \prime} / X$ as well as $Y^{\prime \prime} / Y$ are constants independent of spatial coordinates. Thus we can write

$$
\frac{X^{\prime \prime}}{X}=-k_{x}^{2} \Rightarrow \frac{\partial^{2} X}{\partial x^{2}}+k_{x}^{2} X=0
$$

where k_{x} is some constant. Also, by the same argument,

$$
\frac{Y^{\prime \prime}}{Y}=-k_{y}^{2} \quad \Rightarrow \quad \frac{\partial^{2} Y}{\partial y^{2}}+k_{y}^{2} Y=0,
$$

[^0]$\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f+\left(k^{2}-k_{z}^{2}\right) f=0$

2.29 cm by 1.012 cm

 Stantard X-band (8.212.4 GHz) waveguide in which only TE_{10} mode is non-evanescent within X-band.where k_{y} is some other constant. Furthermore, utilizing both of these conditions within

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\left(k^{2}-k_{z}^{2}\right)=0
$$

$$
\frac{\partial^{2} X}{\partial x^{2}}+k_{x}^{2} X=0
$$

we get

$$
-k_{x}^{2}-k_{y}^{2}+\left(k^{2}-k_{z}^{2}\right)=0 \Rightarrow k_{z}=\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}
$$

$$
\frac{\partial^{2} Y}{\partial y^{2}}+k_{y}^{2} Y=0
$$

- We continue by noting that the 2 nd order ODEs for $X(x)$ and $Y(y)$ above are solved by
$X(x)=A \cos k_{x} x+B \sin k_{x} x$ and $Y(y)=C \cos k_{y} y+D \sin k_{y} y$.
These general solutions with constants A, B, C, D simplify when we apply the boundary conditions that $X(x) Y(y)=0$ at $x=0$ and $y=0$ as follows:
- $X(0)=0$ implies $A=0$, and in turn $X(x)=B \sin k_{x} x$;
- $Y(0)=0$ implies $C=0$, and in turn $Y(y)=D \sin k_{y} y$;

Furthermore,

- $X(a)=0$ implies $k_{x} a=m \pi, m=1,2,3, \cdots$
- $Y(b)=0$ implies $k_{y} b=n \pi, n=1,2,3, \cdots$
- Combining the above results, we get

$$
f(x, y)=X(x) Y(y)=E_{o} \sin \left(k_{x} x\right) \sin \left(k_{y} y\right)
$$

and consequently

$$
E_{z}(x, y, z)=E_{o} \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{-j k_{z} z}
$$

with

$$
k_{x}=\frac{m \pi}{a}, \quad k_{y}=\frac{n \pi}{b}, \quad k_{z}=\frac{\omega}{c} \sqrt{1-\frac{k_{x}^{2}+k_{y}^{2}}{k^{2}}}=\frac{\omega}{c} \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}
$$

where

$$
f_{c}=\sqrt{\left(\frac{m c}{2 a}\right)^{2}+\left(\frac{n c}{2 b}\right)^{2}}
$$

is the pertinent cutoff frequency of the $\mathrm{TM}_{m n}$ mode with $m, n \geq 0$.

- Note that neither $m=0$ nor $n=0$ are permitted with non-zero E_{z}. Thus $\mathrm{TM}_{m 0}$ and $\mathrm{TM}_{0 n}$ modes don't exist!

Transverse field components:

Above, we have obtained the dispersion relation for $\mathrm{TM}_{m n}$ mode in rectangular waveguides. The dispersion characteristics of these modes are identical to

Cutoff wavelength: As usual we have

$$
\frac{\lambda_{c}}{\lambda}=\frac{f}{f_{c}}
$$

and hence
$\lambda_{c}=\frac{\lambda f}{\sqrt{\left(\frac{m c}{2 a}\right)^{2}+\left(\frac{n c}{2 b}\right)^{2}}}=\frac{1}{\sqrt{\left(\frac{m}{2 a}\right)^{2}+\left(\frac{n}{2 b}\right)^{2}}}$. those we have discussed in connection with parallel-plate waveguides except for the generalized expression for f_{c}.

- Given $E_{z}(x, y, z)$ determined above as well as the fact that $H_{z}=0$ (by assumption), transverse field components of $\mathrm{TM}_{m n}$ mode waves can be inferred from Faraday's and Ampere's laws as shown next:
- With field components varying with z according to $e^{-j k_{z} z}$, Faraday's law implies

$$
\nabla \times \tilde{\mathbf{E}}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & -j k_{z} \\
E_{x} & E_{y} & E_{z}
\end{array}\right|=-j \omega \mu_{o}\left(H_{x}, H_{y}, H_{z}\right),
$$

from which

$$
H_{x}=\frac{\frac{\partial E_{z}}{\partial y}+j k_{z} E_{y}}{-j \omega \mu_{o}}, \quad H_{y}=\frac{\frac{\partial E_{z}}{\partial x}+j k_{z} E_{x}}{j \omega \mu_{o}}, \quad H_{z}=\frac{\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}}{-j \omega \mu_{o}} .
$$

- Likewise, Ampere's law implies

$$
\nabla \times \tilde{\mathbf{H}}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & -j k_{z} \\
H_{x} & H_{y} & H_{z}
\end{array}\right|=j \omega \epsilon_{o}\left(E_{x}, E_{y}, E_{z}\right),
$$

from which

$$
E_{x}=\frac{\frac{\partial H_{z}}{\partial y}+j k_{z} H_{y}}{j \omega \epsilon_{o}}, \quad E_{y}=\frac{\frac{\partial H_{z}}{\partial x}+j k_{z} H_{x}}{-j \omega \epsilon_{o}}, \quad E_{z}=\frac{\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}}{j \omega \epsilon_{o}} .
$$

- Now (as confirmed in HW),

$$
H_{x}=\frac{\frac{\partial E_{z}}{\partial y}+j k_{z} E_{y}}{-j \omega \mu_{o}} \text { and } E_{y}=\frac{\frac{\partial H_{z}}{\partial x}+j k_{z} H_{x}}{-j \omega \epsilon_{o}}
$$

from above imply that

$$
H_{x}=-\frac{j k_{z} \frac{\partial H_{z}}{\partial x}-j \omega \epsilon_{o} \frac{\partial E_{z}}{\partial y}}{k^{2}-k_{z}^{2}} \text { and } E_{y}=-\frac{j k_{z} \frac{\partial E_{z}}{\partial y}-j \omega \mu_{o} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}}
$$

and, likewise,

$$
H_{y}=\frac{\frac{\partial E_{z}}{\partial x}+j k_{z} E_{x}}{j \omega \mu_{o}} \text { and } E_{x}=\frac{\frac{\partial H_{z}}{\partial y}+j k_{z} H_{y}}{j \omega \epsilon_{o}}
$$

imply that

$$
H_{y}=-\frac{j k_{z} \frac{\partial H_{z}}{\partial y}+j \omega \epsilon_{o} \frac{\partial E_{z}}{\partial x}}{k^{2}-k_{z}^{2}} \text { and } E_{x}=-\frac{j k_{z} \frac{\partial E_{z}}{\partial x}+j \omega \mu_{o} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}} \text {. }
$$

- The expressions above provide the transverse field components in terms of transverse derivatives of longitudinal components E_{z} and H_{z}.
- By setting $H_{z}=0$, they yield the transverse field components for $\mathrm{TM}_{m n}$ modes shown in the margin.

Also,

- By setting $E_{z}=0$, they yield the transverse field components for $\mathrm{TE}_{m n}$ modes also shown in the margin.

TM mode fields:

$$
\begin{aligned}
H_{x} & =\frac{j \omega \epsilon_{o} \frac{\partial E_{z}}{\partial y}}{k^{2}-k_{z}^{2}}, \\
H_{y} & =\frac{-j \omega \epsilon_{o} \frac{\partial E_{z}}{\partial x}}{k^{2}-k_{z}^{2}}, \\
E_{x} & =\frac{-j k_{z} \frac{\partial E_{z}}{\partial x}}{k^{2}-k_{z}^{2}}, \\
E_{y} & =\frac{-j k_{z} \frac{\partial E_{z}}{\partial y}}{k^{2}-k_{z}^{2}}
\end{aligned}
$$

TE mode fields:

$$
\begin{aligned}
E_{x} & =\frac{-j \omega \mu_{o} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}}, \\
E_{y} & =\frac{j \omega \mu_{o} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}}, \\
H_{x} & =\frac{-j k_{z} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}}, \\
H_{y} & =\frac{-j k_{z} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}} .
\end{aligned}
$$

[^0]: ${ }^{1}$ This may appear to be a restricting assumption. However, if the procedure produces an infinite family of solutions (modes) which span the space of permissible solutions - i.e., a complete set in mathematical terms - then the procedure is not a restricting one in connection with linear pdf's that allow the superposition of permissible solutions.

