$29 \mathrm{TE}_{m n}$ modes in rectangular waveguides

- The analysis of $\mathrm{TE}_{m n}$ modes starts with the wave equation for H_{z}, that is

$$
\nabla^{2} H_{z}+k^{2} H_{z}=0
$$

By analogy to the $\mathrm{TM}_{m n}$ case, and using separation of variables, we have

$$
H_{z}(x, y, z)=\left(A \cos k_{x} x+B \sin k_{x} x\right)\left(C \cos k_{y} y+D \sin k_{y} y\right) e^{-j k_{z} z} .
$$

Pertinent boundary conditions need to be applied in terms of E_{y} and E_{x} on waveguide walls at $x=0$ and a, and $y=0$ and b, respectively:

1. $E_{y}=0$ at $x=0$ and a requires $\frac{\partial H_{z}}{\partial x}=0$ at the same locations, implying $B=0$ and $k_{x} a=m \pi$.
2. $E_{x}=0$ at $y=0$ and b requires $\frac{\partial H_{z}}{\partial y}=0$ at the same locations, implying $D=0$ and $k_{y} b=n \pi$.

Hence,

$$
H_{z}(x, y, z)=H_{o} \cos \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j k_{z} z}
$$

with

$$
k_{x}=\frac{m \pi}{a}, k_{y}=\frac{n \pi}{b}, \quad k_{z}=\frac{\omega}{c} \sqrt{1-\frac{k_{x}^{2}+k_{y}^{2}}{k^{2}}}=\frac{\omega}{c} \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}
$$

TE mode fields:

$$
\begin{aligned}
& E_{x}=\frac{-j \omega \mu_{o} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}}, \\
& E_{y}=\frac{j \omega \mu_{o} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}},
\end{aligned}
$$

$$
H_{x}=\frac{-j k_{z} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}},
$$

$$
H_{y}=\frac{-j k_{z} \frac{\partial \tilde{H}_{z}}{\partial y}}{k^{2}-k_{z}^{2}} .
$$

where

$$
f_{c}=\sqrt{\left(\frac{m c}{2 a}\right)^{2}+\left(\frac{n c}{2 b}\right)^{2}}
$$

is the pertinent cutoff frequency of the $\mathrm{TE}_{m n}$ mode.

- Note that $m=0$ or $n=0$ - but not both zero - are permitted since these choices do not lead to trivial H_{z}.
- However, $m=n=0$ is not permitted, because in that case H_{z} becomes independent of x and y, and leads to zero transverse fields.

TE mode fields:

$$
\begin{aligned}
E_{x} & =\frac{-j \omega \mu_{o} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}} \\
E_{y} & =\frac{j \omega \mu_{o} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}} \\
H_{x} & =\frac{-j k_{z} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}} \\
H_{y} & =\frac{-j k_{z} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& H_{x}=\frac{-j k_{z} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}}=\frac{j k_{z} H_{o} k_{x} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j k_{z} z}}{k_{x}^{2}+k_{y}^{2}} \\
& H_{y}=\frac{-j k_{z} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}}=\frac{j k_{z} H_{o} k_{y} \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{-j k_{z} z}}{k_{x}^{2}+k_{y}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& E_{y}=\frac{j \omega \mu_{o} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}}=\frac{-j \omega \mu_{o} H_{o} k_{x} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j k_{z} z}}{k_{x}^{2}+k_{y}^{2}}, \\
& E_{x}=\frac{-j \omega \mu_{o} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}}=\frac{j \omega \mu_{o} H_{o} k_{y} \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{-j k_{z} z}}{k_{x}^{2}+k_{y}^{2}} .
\end{aligned}
$$

For $\mathrm{TE}_{m 0}$ we have $k_{y}=\frac{n \pi}{b}=0$ and, therefore,

$$
H_{x}=\frac{j k_{z} H_{o} \sin \left(k_{x} x\right) e^{-j k_{z} z}}{k_{x}}, \quad H_{y}=0, \quad E_{y}=\frac{-j \omega \mu_{o} H_{o} \sin \left(k_{x} x\right) e^{-j k_{z} z}}{k_{x}}, \quad E_{x}=0 .
$$

Now, we obtain the TE_{00} field from these by setting $k_{x}=0$ using L'Hospital's law, leading to

$$
H_{x}=j k_{z} H_{o} x e^{-j k_{z} z}, \quad H_{y}=0, \quad E_{y}=-j \omega \mu_{o} H_{o} x e^{-j k_{z} z}, \quad E_{x}=0
$$

these violate the boundary condition of zero E_{y} at $x=a$ unless $H_{o}=0$, which is of course the trivial solution.

Waveguide design and application examples:

Example 2: Design a rectangular air-filled wave guide for single-mode transmission of the frequency band $3.75 \mathrm{GHz}-4.25 \mathrm{GHz}$ in TE_{10} mode. That is, select the dimensions a and $b \leq a$ of the waveguide so that only the TE_{10} mode is propagating in the guide within the specified frequency band while cross sectional area $a b$ is as large as possible for purposes of the power transmission capacity of the guide.

Solution: First, to make sure that TE_{10} mode is propagating in the band for $f>3.75$ GHz , we need

$$
f_{c}=\left.\sqrt{\left(\frac{m c}{2 a}\right)^{2}+\left(\frac{n c}{2 b}\right)^{2}}\right|_{m=1} ^{m}=\frac{c}{2 a}<3.75 \times 10^{9} \mathrm{~Hz}
$$

from which we get

$$
a>\frac{3 \times 10^{10} \mathrm{~cm} / \mathrm{s}}{2 \times 3.75 \times 10^{9} / \mathrm{s}}=4 \mathrm{~cm} .
$$

With $a=4 \mathrm{~cm}$, the cutoff frequency of TE_{20} mode will be 7.5 GHz , which is safely outside our band of interest. Of course with $a>4 \mathrm{~cm} \mathrm{TE} 20$ cutoff frequency will be less than 7.5 GHz , and we can afford reducing it to as small as 4.25 GHz by selecting

$$
a=\left.\frac{c m}{2 f_{c m 0}}\right|_{m=2}=\frac{3 \times 10^{10} \times 2}{2 \times 4.25 \times 10^{9}}=\frac{30}{4.25}=7.06 \mathrm{~cm} .
$$

To ensure single mode operation in $3.75 \mathrm{GHz}-4.25 \mathrm{GHz}$ band we also need for TE_{01} mode a cutoff frequency

$$
f_{c}=\left.\sqrt{\left(\frac{m c}{2 a}\right)^{2}+\left(\frac{n c}{2 b}\right)^{2}}\right|_{m=0} ^{m}=\frac{c}{2 b}>4.25 \times 10^{9} \mathrm{~Hz}
$$

yielding

$$
b<\frac{3 \times 10^{10} \mathrm{~cm} / \mathrm{s}}{2 \times 4.25 \times 10^{9} / \mathrm{s}}=3.53 \mathrm{~cm} .
$$

Hence, a design with maximum possible $a b$ for the specified band works out to have $a=7.06 \mathrm{~cm}$ and $b=a / 2=3.53 \mathrm{~cm}$.

Example 3: Re-design the waveguide in Example 2 for the frequency band 3.75 GHz 4.25 GHz to include some safety margins as follows: Select the dimensions of the wave guide such that the lowest frequency of the band is at least 20% above the cutoff frequency of the fundamental mode (TE_{10}), and the highest frequency of the band is at least 20% lower than the cutoff frequency of the next higher-order mode.

Solution: We already have the lowest frequency of the band, 3.75 GHz , more than 20% above the TE_{10} cutoff frequency $c / 2 a=2.125 \mathrm{GHz}$ - therefore at first it appears that $a=7.06 \mathrm{~cm}$ can remain as is.

But b clearly has to change. To select b, let 4.25 GHz be 0.8 times the cutoff frequency of the TE_{01} mode. Hence

$$
4.25 \times 10^{9}=0.8 \frac{c}{2 b} \Rightarrow b=\frac{0.8 \times 3 \times 10^{10} \mathrm{~cm} / \mathrm{s}}{2 \times 4.25 \times 10^{9} / \mathrm{s}}=2.82 \mathrm{~cm} .
$$

But then we realize that with $a=7.06 \mathrm{~cm}, 4.25 \mathrm{GHz}$ is still the cutoff frequency the of the TE_{20} mode, which is no longer permissible because a safety margin is needed - TE_{20} cutoff frequency also needs to be moved up by the same margin
as TE_{01}; this can be realized by taking the new modified a as $a=2 b=5.64 \mathrm{~cm}$. The corresponding TE_{10} mode cutoff frequency is

$$
f_{c}=\left.\frac{m c}{2 a}\right|_{m=1}=\frac{c}{2 a}=\frac{c}{4 b}=\frac{30 \times 10^{9}}{4 \times 2.82}=2.65 \mathrm{GHz}
$$

and 3.75 GHz is still more than 20% above this.

In conclusion, with $a=5.64 \mathrm{~cm}$ and $b=2.82 \mathrm{~cm}$ we have the required modified dimensions and safety margins.

Example 4: The waveguide of Example 3 is to be used as an attenuator for the next (non-propagating) higher-order mode. What is the minimum attenuation rate for the mode in $\mathrm{dB} / \mathrm{cm}$ over the band $3.75 \mathrm{GHz}-4.25 \mathrm{GHz}$?

Solution: The next higher-order modes are TE_{01} and TE_{20} having equal cutoff frequencies because $a=2 b$.
The attenuation of these modes will be less severe at $f=4.25 \mathrm{GHz}$ than at 3.75 GHz. We have, for these modes, at $f=4.25 \mathrm{GHz}$,

$$
k_{z}=k \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}=k \sqrt{1-\left(\frac{1}{0.8}\right)^{2}}=k \sqrt{1-\left(\frac{5}{4}\right)^{2}}=-j k \frac{3}{4}
$$

Since, at $f=4.25 \mathrm{GHz}$,

$$
\lambda=\frac{3 \times 10^{10}}{4.25 \times 10^{9}}=\frac{30}{4.25} \mathrm{~cm} \Rightarrow k=\frac{2 \pi}{\lambda}=\frac{4.25 \pi}{15} \mathrm{rad} / \mathrm{cm}
$$

we have

$$
\left|k_{z}\right|=\frac{3}{4} k=\frac{3}{4} \frac{4.25 \pi}{15}=\frac{4.25 \pi}{20} \frac{\mathrm{~Np}}{\mathrm{~cm}}
$$

Consequently, the attenuation rate is

$$
20 \log _{10} e^{\left|k_{z}\right|}=4.25 \pi \log _{10} e=5.7986 \mathrm{~dB} / \mathrm{cm}
$$

