30 Guide impedance and TL analogies

TE mode fields:

$$
\begin{aligned}
H_{x} & =\frac{-j k_{z} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}} \\
H_{y} & =\frac{-j k_{z} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}} \\
E_{y} & =\frac{j \omega \mu_{o} \frac{\partial H_{z}}{\partial x}}{k^{2}-k_{z}^{2}} \\
E_{x} & =\frac{-j \omega \mu_{o} \frac{\partial H_{z}}{\partial y}}{k^{2}-k_{z}^{2}} .
\end{aligned}
$$

TM mode fields:

$$
\begin{aligned}
H_{x} & =\frac{j \omega \epsilon_{o} \frac{\partial E_{z}}{\partial y}}{k^{2}-k_{z}^{2}}, \\
H_{y} & =\frac{-j \omega \epsilon_{o} \frac{\partial E_{z}}{\partial x}}{k^{2}-k_{z}^{2}}, \\
E_{y} & =\frac{-j k_{z} \frac{\partial E_{z}}{\partial y}}{k^{2}-k_{z}^{2}} \\
E_{x} & =\frac{-j k_{z} \frac{\partial E_{z}}{\partial x}}{k^{2}-k_{z}^{2}} .
\end{aligned}
$$

The above relations between the transverse components of TE and TM mode fields imply that

TE case:

$$
\begin{aligned}
\frac{E_{x}}{H_{y}} & =\frac{E_{y}}{-H_{x}}=\frac{\omega \mu_{o}}{k_{z}} \\
& =\frac{\omega \mu_{o} / k}{\sqrt{1-\frac{f_{c}^{2}}{f^{2}}}}=\frac{\eta_{o}}{\sqrt{1-\frac{f_{c}^{2}}{f^{2}}}} \equiv \eta_{T E}
\end{aligned}
$$

TM case:

$$
\begin{aligned}
\frac{E_{x}}{H_{y}} & =\frac{E_{y}}{-H_{x}}=\frac{k_{z}}{\omega \epsilon_{o}} \\
& =\frac{k \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}}{\omega \epsilon_{o}}=\eta_{o} \sqrt{1-\frac{f_{c}^{2}}{f^{2}} \equiv \eta_{T M}}
\end{aligned}
$$

The guide impedances defined above can be used to set up transmission line models for waveguide circuits in which the parameters $\eta_{T E}$ and $\eta_{T M}$ for each mode play the same role as the characteristic impedance Z_{o} in TL theory.

- For example, two waveguides in cascade with different values of $\eta_{T E}$ can be quarter-wave matched by inserting a quarter-wave section having a guide impedance equal to the geometric means of the two guides.
- For dielectric-field guides replace η_{o} by the appropriate η, and also in calculating the length of the quarter-wave section use $\lambda_{g}=\frac{2 \pi}{k_{z}}$ appropriate for that section (see HW).

Note that, using the cutoff wavelength, we have

TE case: | | |
| ---: | :--- |
| $\eta_{T E}$ | $=\frac{\eta_{o}}{\sqrt{1-\frac{f^{2}}{f^{2}}}}=\frac{\eta_{o}}{\sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}}}$ |

TM case:

$$
\eta_{T M}=\eta_{o} \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}=\eta_{o} \sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}}
$$

Example 2: Consider an air-filled rectangular waveguide with $a=3 \mathrm{~cm}$ and $b=1$ cm . Determine the TE_{10} mode fields for the guide from the results of Example 1 of Lect 29 assuming that at the operation frequency the free-space wavelength is $\lambda=3 \mathrm{~cm}$.

Solution: By setting $k_{y}=0, k_{x}=\frac{m \pi}{a}=\frac{2 \pi}{\lambda_{c}}$, and $k_{z}=k \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}=\frac{2 \pi}{\lambda_{z}}$ in the results of Example 1 (in Lect 29) we find for $\mathrm{TE}_{m 0}$ mode

$$
\begin{aligned}
\tilde{\mathbf{H}}(x, y, z) & =H_{o}\left[\hat{x} \frac{j k_{z}}{k_{x}} \sin \left(k_{x} x\right)+\hat{z} \cos \left(k_{x} x\right)\right] e^{-j k_{z} z} \\
& =H_{o}\left[\hat{x} \frac{j \lambda_{c} \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}{\lambda} \sin \left(\frac{2 \pi}{\lambda_{c}} x\right)+\hat{z} \cos \left(\frac{2 \pi}{\lambda_{c}} x\right)\right] e^{-j k \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}} z}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{\mathbf{E}}(x, y, z) & =-H_{o} \hat{y} \frac{j \omega \mu_{o}}{k_{x}} \sin \left(k_{x} x\right) e^{-j k_{z} z} \\
& =-H_{o} \hat{y} \eta_{T E} \frac{j \lambda_{c} \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}{\lambda} \sin \left(\frac{2 \pi}{\lambda_{c}} x\right) e^{-j k \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}} z} \\
& =-H_{o} \hat{y} \eta_{o} \frac{j \lambda_{c}}{\lambda} \sin \left(\frac{2 \pi}{\lambda_{c}} x\right) e^{-j k \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}} z} .
\end{aligned}
$$

With $a=3 \mathrm{~cm}$ and $b=1 \mathrm{~cm}$, the cutoff wavelength for TE_{10} mode is

$$
\lambda_{c}=\frac{2 a}{m}=6 \mathrm{~cm}
$$

Thus, with $\lambda=3 \mathrm{~cm}$

$$
\sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}, \frac{\lambda_{c}}{\lambda}=2, \frac{\lambda_{z}}{\lambda}=\frac{2}{\sqrt{3}} .
$$

Then, for TE_{10} mode we have

$$
\tilde{\mathbf{H}}(x, y, z)=H_{o}\left[\hat{x} j \sqrt{3} \sin \left(\frac{\pi}{3} x\right)+\hat{z} \cos \left(\frac{\pi}{3} x\right)\right] e^{-j \pi z / \sqrt{3}}
$$

and

$$
\tilde{\mathbf{E}}(x, y, z)=-H_{o} \hat{y} \eta_{o} j 2 \sin \left(\frac{\pi}{3} x\right) e^{-j \pi z / \sqrt{3}} .
$$

The real part of these phasors would yield the field vectors inside the waveguide at time $t=0$, as depicted below.

- In the 3D plots shown above we depict $\mathbf{E}(x, y, z, 0)$ vectors from Example 2 on the left, and $\mathbf{H}(x, y, z, 0)$ on the right; the horizontal axis is x, vertical is z, and y axis is into the page (all labelled in cm units) -note that
- there is no field variation in y-direction because this is the TE_{10} mode,
$-\mathbf{E} \times \mathbf{H}$ is predominantly in \hat{z} direction.

Example 3: Repeat Example 2 for the case of TE_{20} mode and $\lambda=2 \mathrm{~cm}$.
Solution: For the $\mathrm{TE}_{m 0}$ mode we have

$$
\tilde{\mathbf{H}}(x, y, z)=H_{o}\left[\hat{x} \frac{j \lambda_{c} \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}{\lambda} \sin \left(\frac{2 \pi}{\lambda_{c}} x\right)+\hat{z} \cos \left(\frac{2 \pi}{\lambda_{c}} x\right)\right] e^{-j k \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}} z}
$$

and

$$
\tilde{\mathbf{E}}(x, y, z)=-H_{o} \hat{y} \eta_{o} \frac{j \lambda_{c}}{\lambda} \sin \left(\frac{2 \pi}{\lambda_{c}} x\right) e^{-j k \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}} z} .
$$

With $a=3 \mathrm{~cm}$ and $b=1 \mathrm{~cm}$, the cutoff wavelength for TE_{20} mode is

$$
\lambda_{c}=\frac{2 a}{m}=3 \mathrm{~cm} .
$$

Thus, with $\lambda=2 \mathrm{~cm}$

$$
\sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}, \frac{\lambda_{c}}{\lambda}=1.5, \frac{\lambda_{z}}{\lambda}=\frac{3}{\sqrt{5}} .
$$

Then, for TE_{10} mode we have

$$
\tilde{\mathbf{H}}(x, y, z)=H_{o}\left[\hat{x} j \frac{\sqrt{5}}{2} \sin \left(\frac{2 \pi}{3} x\right)+\hat{z} \cos \left(\frac{2 \pi}{3} x\right)\right] e^{-j \pi z \sqrt{5} / 3}
$$

and

$$
\tilde{\mathbf{E}}(x, y, z)=-H_{o} \hat{y} \eta_{o} j \frac{3}{2} \sin \left(\frac{2 \pi}{3} x\right) e^{-j \pi z \sqrt{5} / 3}
$$

The real part of these phasors would yield the field vectors inside the waveguide at time $t=0$, as depicted below.

- In the 3D plots shown above we depict $\mathbf{E}(x, y, z, 0)$ vectors from Example 3 on the left, and $\mathbf{H}(x, y, z, 0)$ on the right; the horizontal axis is x, vertical is z, and y axis is into the page (all labelled in cm units).
- Imagine the vector patterns depicted above sliding upwards in the z axis direction at the speed $v_{p z}=\frac{\omega}{k_{z}}$, with each feature of the pattern passing by a stationary observer who experiences a monochromatic oscillation.
- that would be the proper way of visualizing the propagation of an unmodulated TE_{20} mode.

Example 4: For the $\mathrm{TE}_{m 0}$ mode we have the wave fields

$$
\tilde{\mathbf{H}}(x, y, z)=H_{o}\left[\hat{x} \frac{j \lambda_{c} \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}{\lambda} \sin \left(\frac{2 \pi}{\lambda_{c}} x\right)+\hat{z} \cos \left(\frac{2 \pi}{\lambda_{c}} x\right)\right] e^{-j k \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}} z}
$$

and

$$
\tilde{\mathbf{E}}(x, y, z)=-H_{o} \hat{y} \eta_{o} \frac{j \lambda_{c}}{\lambda} \sin \left(\frac{2 \pi}{\lambda_{c}} x\right) e^{-j k \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}} z} .
$$

Express the time-averaged power transmitted by the mode in \hat{z} direction in terms of

$$
E_{o} \equiv H_{o} \eta_{o} \frac{\lambda_{c}}{\lambda}
$$

representing the amplitude of the electric field wave.
Solution: We start with the time-averaged Poynting vector

$$
\begin{aligned}
\langle\mathbf{E} \times \mathbf{H}\rangle & =\frac{1}{2} \operatorname{Re}\left\{\tilde{\mathbf{E}} \times \tilde{\mathbf{H}}^{*}\right\} \\
& =\frac{\left|H_{o}\right|^{2} \eta_{o}}{2}\left(\frac{\lambda_{c}}{\lambda}\right)^{2} \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}} \sin ^{2}\left(\frac{2 \pi}{\lambda_{c}} x\right) \hat{z} \\
& =\frac{\left|E_{o}\right|^{2}}{2 \eta_{o}} \sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}} \sin ^{2}\left(\frac{2 \pi}{\lambda_{c}} x\right) \hat{z}=\frac{\left|E_{o}\right|^{2}}{2 \eta_{T E}} \sin ^{2}\left(\frac{2 \pi}{\lambda_{c}} x\right) \hat{z} .
\end{aligned}
$$

Now, integrating $\langle\mathbf{E} \times \mathbf{H}\rangle \cdot \hat{z}$ across the guide cross section we get the time-average power

$$
\begin{aligned}
P & =\int_{x=0}^{a} \int_{y=0}^{b}\langle\mathbf{E} \times \mathbf{H}\rangle \cdot \hat{z} d x d y \\
& =\frac{\left|E_{o}\right|^{2}}{2 \eta_{T E}} b \int_{0}^{a} \sin ^{2}\left(\frac{2 \pi}{\lambda_{c}} x\right) d x=\frac{\left|E_{o}\right|^{2}}{2 \eta_{T E}} \frac{a b}{2}
\end{aligned}
$$

since the integral of

$$
\sin ^{2}\left(\frac{2 \pi}{\lambda_{c}} x\right)=\frac{1}{2}\left(1-\cos \left(\frac{4 \pi}{2 a / m} x\right)\right)=\frac{1}{2}(1-\cos (2 \pi m x / a))
$$

yields $1 / 2$. It can be shown that in the case of $\mathrm{TE}_{m n}$ modes with non-zero n, the above result for P is still valid provided $a b / 2$ is replaced by $a b / 4$ (see HW).

Example 5: A rectangular waveguide with $a=2 \mathrm{~cm}$ and $b=1 \mathrm{~cm}$ is air filled for $z<0$, but is is filled with a dielectric in $z>0$ region with a refractive index $n=1.5$ and $\mu_{r}=1$. For $f=12.5 \mathrm{GHz}$ and TE_{10} mode operation design a $\lambda / 4$ transformer to match the two sections of the waveguide. Use transmission-line analogy to solve this problem (as in Lecture 24).

Solution: To solve this problem using a transmission-line analogy we first need the impedances $\eta_{T E}$ for the two sections of the guide. Since

$$
\eta_{T E}=\frac{\eta}{\sqrt{1-\frac{f_{c}^{2}}{f^{2}}}}
$$

we need to find f_{c} and η in the two sections of the guide.
The cutoff frequency is

$$
f_{c}=\frac{m c}{2 a}=\frac{3 \times 10^{10} \mathrm{~cm} / \mathrm{s}}{2 \times 2 \mathrm{~cm}}=7.5 \mathrm{GHz} \text { in air },
$$

and

$$
f_{c}=\frac{m c / n}{2 a}=\frac{7.5 \mathrm{GHz}}{n}=\frac{7.5 \mathrm{GHz}}{1.5}=5 \mathrm{GHz} \text { in dielectric. }
$$

Hence

$$
\eta_{T E}=\frac{\eta}{\sqrt{1-\frac{f_{2}^{2}}{f^{2}}}}=\frac{120 \pi}{\sqrt{1-\left(\frac{7.5}{12.5}\right)^{2}}}=150 \pi \Omega \text { in air }
$$

and

$$
\eta_{T E}=\frac{\eta}{\sqrt{1-\frac{f_{2}^{2}}{f^{2}}}}=\frac{120 \pi / 1.5}{\sqrt{1-\left(\frac{5}{12.5}\right)^{2}}}=\frac{400 \pi}{\sqrt{21}} \Omega \text { in dielectric. }
$$

Since $\eta_{T E, \text { air }} \neq \eta_{T E, \text { diel }}$, we will certainly have reflections at the interface at $z=0$ unless a matching section is inserted.

Consider a $\lambda / 4$ long section of a waveguide with identical dimensions as above but filled with some dielectric having a refractive index n_{x}. Then, transmission-line analogy would indicate that an impedance match can be achieved if

$$
\eta_{T E, a i r} \eta_{T E, d i e l}=\eta_{T E, x}^{2}
$$

where $\eta_{T E, x}$ is the impedance of the matching segment. In view of the above relations, this can be written as

$$
(150 \pi)\left(\frac{400 \pi}{\sqrt{21}}\right)=\left[\frac{120 \pi / n_{x}}{\sqrt{1-\left(\frac{7.5 / n_{x}}{12.5}\right)^{2}}}\right]^{2}
$$

which yields

$$
n_{x}^{2}-\left(\frac{7.5}{12.5}\right)^{2}=\frac{120^{2} \sqrt{21}}{150 \times 400} \Rightarrow n_{x}^{2}=1.459
$$

To determine the actual length of the $\lambda / 4$ long section we need to find out λ, which is really the guide wavelength λ_{g} for the TE_{10} mode, i.e.,

$$
\begin{aligned}
\lambda_{g} & =\frac{2 \pi}{k_{z}}=\frac{2 \pi / k}{\sqrt{1-\frac{f_{2}^{2}}{f^{2}}}}=\frac{c / n_{x}}{12.5 \times 10^{9} \sqrt{1-\left(\frac{7.5 / n_{x}}{12.5}\right)^{2}}}=\frac{30}{12.5 n_{x} \sqrt{1-\left(\frac{7.5 / n_{x}}{12.5}\right)^{2}}} \\
& =\frac{30}{\sqrt{\left(12.5 n_{x}\right)^{2}-7.5^{2}}}=2.28 \mathrm{~cm} .
\end{aligned}
$$

Thus, the matching section has a physical length of

$$
d=\frac{\lambda_{g}}{4}=0.572 \mathrm{~cm} .
$$

